817 research outputs found

    Efficient implementation of filter bank multicarrier systems using circular fast convolution

    Get PDF
    In this paper, filter bank-based multicarrier systems using a fast convolution approach are investigated. We show that exploiting offset quadrature amplitude modulation enables us to perform FFT/IFFT-based convolution without overlapped processing, and the circular distortion can be discarded as a part of orthogonal interference terms. This property has two advantages. First, it leads to spectral efficiency enhancement in the system by removing the prototype filter transients. Second, the complexity of the system is significantly reduced as the result of using efficient FFT algorithms for convolution. The new scheme is compared with the conventional waveforms in terms of out-of-band radiation, orthogonality, spectral efficiency, and complexity. The performance of the receiver and the equalization methods are investigated and compared with other waveforms through simulations. Moreover, based on the time variant nature of the filter response of the proposed scheme, a pilot-based channel estimation technique with controlled transmit power is developed and analyzed through lower-bound derivations. The proposed transceiver is shown to be a competitive solution for future wireless networks

    Waveform Design for 5G and Beyond

    Get PDF
    5G is envisioned to improve major key performance indicators (KPIs), such as peak data rate, spectral efficiency, power consumption, complexity, connection density, latency, and mobility. This chapter aims to provide a complete picture of the ongoing 5G waveform discussions and overviews the major candidates. It provides a brief description of the waveform and reveals the 5G use cases and waveform design requirements. The chapter presents the main features of cyclic prefix-orthogonal frequency-division multiplexing (CP-OFDM) that is deployed in 4G LTE systems. CP-OFDM is the baseline of the 5G waveform discussions since the performance of a new waveform is usually compared with it. The chapter examines the essential characteristics of the major waveform candidates along with the related advantages and disadvantages. It summarizes and compares the key features of different waveforms.Comment: 22 pages, 21 figures, 2 tables; accepted version (The URL for the final version: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch2

    Filter Bank Multicarrier for Massive MIMO

    Full text link
    This paper introduces filter bank multicarrier (FBMC) as a potential candidate in the application of massive MIMO communication. It also points out the advantages of FBMC over OFDM (orthogonal frequency division multiplexing) in the application of massive MIMO. The absence of cyclic prefix in FBMC increases the bandwidth efficiency. In addition, FBMC allows carrier aggregation straightforwardly. Self-equalization, a property of FBMC in massive MIMO that is introduced in this paper, has the impact of reducing (i) complexity; (ii) sensitivity to carrier frequency offset (CFO); (iii) peak-to-average power ratio (PAPR); (iv) system latency; and (v) increasing bandwidth efficiency. The numerical results that corroborate these claims are presented.Comment: 7 pages, 6 figure

    Modeling Interference Between OFDM/OQAM and CP-OFDM: Limitations of the PSD-Based Model

    Get PDF
    To answer the challenges put out by the next generation of wireless networks (5G), important research efforts have been undertaken during the last few years to find new waveforms that are better spectrally localized and less sensitive to asynchronism effects than the widely deployed Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM). One of the most studied schemes is OFDM-Offset Quadrature Amplitude Modulation (OFDM/OQAM) based on the PHYDYAS filter pulse. In the recent literature, spectrum coexistence between OFDM/OQAM and CP-OFDM is commonly studied based on the Power Spectral Density (PSD) model. In this paper, we show that this approach is flawed and we show that the actual interference injected by OFDM/OQAM systems onto CP-OFDM is much higher than what is classically expected with the PSD based model in the literature. We show that though using OFDM/OQAM in secondary systems is still advantageous, it brings limited gain in the context of coexistence with incumbent CP-OFDM systems.Comment: 7 pages, 9 figures, ICT 201

    Circular Convolution Filter Bank Multicarrier (FBMC) System with Index Modulation

    Get PDF
    Orthogonal frequency division multiplexing with index modulation (OFDM-IM), which uses the subcarrier indices as a source of information, has attracted considerable interest recently. Motivated by the index modulation (IM) concept, we build a circular convolution filter bank multicarrier with index modulation (C-FBMC-IM) system in this paper. The advantages of the C-FBMC-IM system are investigated by comparing the interference power with the conventional C-FBMC system. As some subcarriers carry nothing but zeros, the minimum mean square error (MMSE) equalization bias power will be smaller comparing to the conventional C-FBMC system. As a result, our C-FBMC-IM system outperforms the conventional C-FBMC system. The simulation results demonstrate that both BER and spectral efficiency improvement can be achieved when we apply IM into the C-FBMC system
    corecore