276 research outputs found

    Variational Inference-based Joint Interference Mitigation and OFDM Equalization Under High Mobility

    Get PDF
    In OFDM-based spectrum sharing networks, due to inefficient coordination or imperfect spectrum sensing, the signals from femtocells or secondary users appear as interference in a subset of subcarriers of the primary systems. Together with the inter-carrier interference (ICI) introduced by high mobility, equalizing one subcarrier now depends not only on whether interference exists, but also the neighboring subcarrier data. In this letter, we propose a novel approach to iteratively learn the statistics of noise plus interference across different subcarriers, and refine the soft data estimates of each subcarrier based on the variational inference. Simulation results show that the pro- posed method avoids the error floor effect, which is exhibited by existing algorithms without considering interference mitigation, and performs close to the ideal case with perfect ICI cancelation and knowledge of noise plus interference powers for optimal maximum a posteriori probability (MAP) equalizer.published_or_final_versio

    Factor graph based detection approach for high-mobility OFDM systems with large FFT modes

    Get PDF
    In this article, a novel detector design is proposed for orthogonal frequency division multiplexing (OFDM) systems over frequency selective and time varying channels. Namely, we focus on systems with large OFDM symbol lengths where design and complexity constraints have to be taken into account and many of the existing ICI reduction techniques can not be applied. We propose a factor graph (FG) based approach for maximum a posteriori (MAP) symbol detection which exploits the frequency diversity introduced by the ICI in the OFDM symbol. The proposed algorithm provides high diversity orders allowing to outperform the free-ICI performance in high-mobility scenarios with an inherent parallel structure suitable for large OFDM block sizes. The performance of the mentioned near-optimal detection strategy is analyzed over a general bit-interleaved coded modulation (BICM) system applying low-density parity-check (LDPC) codes. The inclusion of pilot symbols is also considered in order to analyze how they assist the detection process

    Channel Estimation and ICI Cancelation in Vehicular Channels of OFDM Wireless Communication Systems

    Full text link
    Orthogonal frequency division multiplexing (OFDM) scheme increases bandwidth efficiency (BE) of data transmission and eliminates inter symbol interference (ISI). As a result, it has been widely used for wideband communication systems that have been developed during the past two decades and it can be a good candidate for the emerging communication systems such as fifth generation (5G) cellular networks with high carrier frequency and communication systems of high speed vehicles such as high speed trains (HSTs) and supersonic unmanned aircraft vehicles (UAVs). However, the employment of OFDM for those upcoming systems is challenging because of high Doppler shifts. High Doppler shift makes the wideband communication channel to be both frequency selective and time selective, doubly selective (DS), causes inter carrier interference (ICI) and destroys the orthogonality between the subcarriers of OFDM signal. In order to demodulate the signal in OFDM systems and mitigate ICIs, channel state information (CSI) is required. In this work, we deal with channel estimation (CE) and ICI cancellation in DS vehicular channels. The digitized model of the DS channels can be short and dense, or long and sparse. CE methods that perform well for short and dense channels are highly inefficient for long and sparse channels. As a result, for the latter type of channels, we proposed the employment of compressed sensing (CS) based schemes for estimating the channel. In addition, we extended our CE methods for multiple input multiple output (MIMO) scenarios. We evaluated the CE accuracy and data demodulation fidelity, along with the BE and computational complexity of our methods and compared the results with the previous CE procedures in different environments. The simulation results indicate that our proposed CE methods perform considerably better than the conventional CE schemes

    Intercarrier Interference Suppression for the OFDM Systems in Time-Varying Multipath Fading Channels

    Get PDF
    Due to its spectral efficiency and robustness over the multipath channels, orthogonal frequency division multiplexing (OFDM) has served as one of the major modulation schemes for the modern communication systems. In the future, the wireless OFDM systems are expected to operate at high carrier-frequencies, high speed and high throughput mobile reception, where the fasting time-varying fading channels are encountered. The channel variation destroys the orthogonality among the subcarriers and leads to the intercarrier interference (ICI). ICI poses a significant limitation to the wireless OFDM systems. The aim of this dissertation is to find an efficient method of providing reliable communication using OFDM in the fast time-varying fading channel scenarios. First, we investigate the OFDM performance in the situation of time-varying mobile channels in the presence of multiple Doppler frequency shifts. A new mathematical framework of the ICI effect is derived. The simulation results show that ICI induces an irreducible error probability floor, which in proportional to the Doppler frequency shifts. Furthermore, it is observed that ICI power arises from a few adjacent subcarriers. This observation motivates us to design the low-complexity Q-tap equalizers, namely, Minimum Mean Square Error (MMSE) linear equalizer and Decision Feedback (DF) non-linear equalizer to mitigate the ICI. Simulation results show that both Q-tap equalizers can improve the system performance in the sense of symbol error rate (SER). To employ these equalizers, the channel state information is also required. In this dissertation, we also design a pilot-aided channel estimation via Wiener filtering for a time-varying Wide-sense Stationary Uncorrelated Scatterers (WSSUS) channel model. The channel estimator utilizes that channel statistical properties. Our proposed low-complexity ICI suppression scheme, which incorporates the Q-tap equalizer with our proposed channel estimator, can significantly improve the performance of the OFDM systems in a fast time-varying fading channels. At the last part of the dissertation, an alternative ICI mitigation approach, which is based on the ICI self-cancellation coding, is also discussed. The EM-based approach, which solves the phase and amplitude ambiguities associated with this approach, is also introduced

    Signal Detection for OFDM-Based Virtual MIMO Systems under Unknown Doubly Selective Channels, Multiple Interferences and Phase Noises

    Get PDF
    In this paper, the challenging problem of signal detection under severe communication environment that plagued by unknown doubly selective channels (DSCs), multiple narrowband interferences (NBIs) and phase noises (PNs) is investigated for orthogonal frequency division multiplexing based virtual multiple-input multiple-output (OFDM-V-MIMO) systems. Based on the Variational Bayesian Inference framework, a novel iterative algorithm for joint signal detection, DSC, NBI and PN estimations is proposed. Simulation results demonstrate quick convergence of the proposed algorithm, and after convergence, the bit-error-rate performance of the proposed signal detection algorithm is very close to that of the ideal case which assumes perfect channel state information, no PN, and known positions and powers of NBIs plus additive white Gaussian noise. Furthermore, simulation results show that the proposed signal detection algorithm outperforms other state-of-the-art methods.published_or_final_versio
    • …
    corecore