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Signal Detection for OFDM-Based Virtual MIMO
Systems under Unknown Doubly Selective

Channels, Multiple Interferences and Phase Noises
Ke Zhong, Yik-Chung Wu, and Shaoqian Li, Senior Member, IEEE

Abstract—In this paper, the challenging problem of signal de-
tection under severe communication environment that plagued by
unknown doubly selective channels (DSCs), multiple narrowband
interferences (NBIs) and phase noises (PNs) is investigated for or-
thogonal frequency division multiplexing based virtual multiple-
input multiple-output (OFDM-V-MIMO) systems. Based on the
Variational Bayesian Inference framework, a novel iterative algo-
rithm for joint signal detection, DSC, NBI and PN estimations is
proposed. Simulation results demonstrate quick convergence of
the proposed algorithm, and after convergence, the bit-error-rate
performance of the proposed signal detection algorithm is very
close to that of the ideal case which assumes perfect channel
state information, no PN, and known positions and powers of
NBIs plus additive white Gaussian noise. Furthermore, simula-
tion results show that the proposed signal detection algorithm
outperforms other state-of-the-art methods.

Index Terms—Signal detection, virtual multiple-input multiple-
output (V-MIMO), orthogonal frequency division multiplexing
(OFDM), phase noise (PN), doubly selective channel (DSC),
narrowband interference (NBI), Variational Bayesian Inference
(VBI).

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) communica-
tion [1] has emerged as an important technology for

boosting spectrum efficiency and system capacity. On the other
hand, orthogonal frequency division multiplexing (OFDM)
[2] provides high-data-rate transmission capability and is
robustness to frequency-selective fading. Therefore, MIMO
combined with OFDM (MIMO-OFDM) is a promising access
scheme for modern communication systems [3]. However,
physical implementation of multiple antennas at a small mo-
bile terminal (MT) may not be feasible due to cost, size, power
and complexity constraints. To overcome this problem, virtual
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Fig. 1. A V-MIMO system under unknown DSCs, multiple interferences
and PNs.

MIMO (V-MIMO) [4], [5] is an attractive alternative, where
multiple single-antenna MTs independently or cooperatively
transmit signals to the multiple-antenna base station (BS). In
fact, OFDM-based V-MIMO (OFDM-V-MIMO) has been in-
corporated in recent wireless standards, such as IEEE 802.11e
[6] and 3GPP-LTE [7].

Although with many attractive features, there are a lot of
challenges faced by OFDM-V-MIMO systems in practical
scenarios (depicted in Fig. 1):

1) Due to cost constraint, low-cost oscillators are usually
used in MTs, which results in phase noise (PN). It
is known that the performance of OFDM systems is
very sensitive to PN due to the induced common phase
error (CPE) and inter-carrier interference (ICI) [8], [9].
Making the situation even more challenging is the fact
that in V-MIMO, each MT has its own oscillator, leading
to received signal at BS corrupted by multiple PNs.

2) In emerging communication scenarios, such as femtocell
[10] and cognitive radio systems [11], spectrum sharing
is common. In these systems, sophisticated measures
for detecting and mitigating multiple narrowband inter-
ferences (NBIs) must be employed, otherwise risking
significant degradation of system performance [12].

3) Requesting high-data-rate wireless communication while
under high-speed movement is one of the key features
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in modern communications. In fact, current and future
wireless communication systems, such as 3GPP-LTE
and WiMAX, are required to provide support for high-
mobility users at speeds up to 350km/h. High mobility
together with high data rate result in time and frequency
selectivities in channel (i.e., doubly selective channel,
DSC), which significantly complicate channel estimation
and signal detection in OFDM and multiple-antenna
systems [3], [13].

Any one of the above challenges calls for extensive re-
search, let alone all three together. In fact, previous works on
related topics only consider subsets of the problems mentioned
above. In particular, assuming the channel is perfectly known,
signal detection and PN cancelation was investigated under
time-invariant frequency-selective channel (TIFSC) in [14],
[15] and DSC in [16], respectively. For static channel esti-
mation under PN, it was investigated in [17] using Maximum
A Posteriori (MAP) estimator, and in [18] using sequential
Monte Carlo (SMC) based algorithm. To deal with NBIs,
expectation-maximization (EM) algorithms were developed to
jointly estimate TIFSC and NBI in [19], and to detect data
under NBI in [20], respectively. On the other hand, joint
channel estimation and signal detection was investigated for
OFDM systems under static channel [21], [22] and under DSC
[23], respectively. For data detection under unknown TIFSC
and PN, it was addressed in [24] based on pilot-aided estimator
and decision-feedback scheme, and in [25] using Markov
Chain Monte Carlo (MCMC). Finally, joint signal detection
and channel tracking in the presence of PN was addressed in
[26]. However, the channel is assumed to be quasi-static for
the duration of an OFDM symbol.

In this paper, we consider all three challenges together.
More specifically, signal detection in the uplink of OFDM-
V-MIMO systems operating over DSCs in the presence of
multiple unknown NBIs and PNs is investigated. In this severe
scenario, besides the unknown interferences caused by NBIs
and CPEs caused by PNs, the combined ICIs from both
DSCs and PNs will make signal detection extremely difficult.
Moreover, we consider the worst case where data, DSCs,
NBIs and PNs change from one OFDM symbol to another,
which means that there is no correlation among adjacent
OFDM symbols can be utilized, and only the information
from the current OFDM symbol can be used. As is well
known, the optimal signal detection in this scenario is to find
the maximum value of the marginalized posterior distribution
of the data signal. However, finding exact expression for this
posterior distribution leads to intractable integrals [27]. In this
paper, we employ the Variational Bayesian Inference (VBI)
[28], [29] approach to develop an iterative algorithm to solve
this challenging problem. VBI is a systematic framework
for approximating intractable integrals arising in Bayesian
statistics and machine learning, and has recently been suc-
cessfully applied to tackle subsets of challenges mentioned
in this paper [15], [21]-[23], [26]. Simulation results show
that after convergence, the proposed signal detection algorithm
performs very close to that of the ideal case which assumes
perfect channel state information (CSI), no PN, and known
positions and powers of NBIs plus additive white Gaussian
noise (AWGN). Furthermore, it is shown that the proposed

signal detection algorithm outperforms other state-of-the-art
methods.

The organization of this paper is as follows. The system
model for OFDM-V-MIMO systems operating over DSCs
with multiple NBIs and PNs is introduced in Section II. In
Section III, based on VBI, an iterative algorithm for joint
signal detection, DSC, NBI and PN estimations in such severe
communication environment is proposed. Extensive simulation
results are given in Section IV to demonstrate the effectiveness
of the proposed algorithm. Finally, conclusions are drawn in
Section V.

Notation: Matrices and vectors are represented by boldface
uppercase and lowercase letters, respectively. A hat over a
variable (e.g., x̂) indicates an estimate of the variable. E{·}
denotes the expectation. Superscripts [·]T , [·]−1, [·]H and
[·]∗ denote the transpose, the matrix inversion, the Hermitian
and the complex conjugate operations, respectively. IN is
an identity matrix with dimension N . diag{x} stands for
the diagonal matrix with vector x on its diagonal. Bldiag{·}
denotes the block diagonal concatenation of input arguments.
The symbol ⊗ denotes the Kronecker product. Tr{X} and
det(X) are the trace and the determinant of a square matrix
X, respectively. |·| denotes the modulus of a complex number.
�{·} denotes the real part of the quantity in the bracket. The
matrix F is the normalized fast Fourier transform (FFT) matrix
with the (m,n)th element given by 1√

N
e−j2πmn/N , where

j �
√−1. ∝ means equal up to a normalizing constant. 0m

and 1m denote the m×1 all-zero and all-one column vectors,
respectively. δ(·) denotes the Dirac delta function. The kth

element of vector x is denoted by x(k).

II. SYSTEM MODEL

A. Received OFDM-V-MIMO Signal

We consider an uplink OFDM-V-MIMO system with NR
receive antennas at the BS and NT (NR ≥ NT ) selected
MTs with each MT equipped with one transmit antenna (for
user selection in V-MIMO, see [30], [31] and references
therein). Each MT independently transmits its own OFDM
symbols to the BS. For the ith MT, the time domain signal
si = [si(0), ..., si(N − 1)]T is generated by taking the N -
point inverse FFT (IFFT) of the source signal in the frequency
domain xi = [xi(0), ..., xi(N−1)]T as si = FHxi. In general,
the elements of xi can be categorized into

xi(k) =

{
xid(k) ∀ k ∈ Iid
xip(k) ∀ k ∈ Iip

(1)

where Iid is the index set of subcarriers allocated for data
symbols (with Nd elements) and Iip is the index set of
subcarriers allocated for pilot symbols (with Np elements),
respectively. Notice that N = Nd + Np. From (1), we
can write xi = Eidx

i
d + Eipx

i
p, where Eid and Eip denote

the matrices collecting columns of IN corresponding to Iid
and Iip, respectively, and xid = [xid(0), ..., x

i
d(Nd − 1)]T ,

xip = [xip(0), ..., x
i
p(Np − 1)]T denote the data and pilot

vectors, respectively. A cyclic prefix (CP) with length Ncp
longer than the maximum delay spread of channels between
MTs and BS is inserted at the beginning of each OFDM
symbol to eliminate intersymbol interference (ISI).
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At the jth receive antenna of the BS, assuming perfect tim-
ing and frequency synchronization are achieved, the received
signal for a whole OFDM symbol, after discarding the CP and
transforming back into the frequency domain, is given by

yj =

NT−1∑
i=0

FHjiPisi + ςςςj + vj , (2)

where the symbols in (2) are defined as:
• Hji represents the DSC matrix between the ith MT and the
jth receive antenna at the BS and is given by Eq. (3) at the top
of the next page, where hji(n, l) denotes the corresponding
DSC of the lth path at time n, and Lji represents the
corresponding channel length. Each channel path is assumed
to obey the classical Jakes model [32].
• The PN process for the ith MT is represented by

Pi = diag{ejφi}, (4)

where ejφ
i

= [ejφ
i(0), ..., ejφ

i(N−1)]T with φi =
[φi(0), ..., φi(N − 1)]T representing the discrete-time PN se-
quence.
• ςςςj = [ςj(0), ..., ςj(N−1)]T and vj = [vj(0), ..., vj(N−1)]T

denote the disturbance terms that account for the NBI and
AWGN at the jth receive antenna of the BS, respectively.
Elements of vj are zero-mean Gaussian distributed with
unknown variance σ2

v . Furthermore, following [19], [20], ςj(k)
is modeled as a complex Gaussian random variable with zero
mean and unknown power σ2

ς,j(k). The multiple NBIs are
assumed to be mutually independent which can be regarded
as the worst-case scenario. This is because if correlation exists
between NBIs, this correlation can be profitably exploited
to improve the system performance against NBI. Notice that
the NBI is not the ICI due to PNs and DSCs. ICI has been
explicitly modeled in system model (2).

Notice that Hji in (3) can be decomposed as a sum of Lji

terms as

Hji =

Lji−1∑
l=0

diag{hjil }Al, (5)

where hjil = [hji(0, l), ..., hji(N − 1, l)]T is the lth path
channel between the ith MT and the jth receive antenna at
the BS, and the N × N matrix Al is a permutation matrix
obtained from cyclically shifting the columns of the identity
matrix IN to the left by l positions. Substituting (4) and (5)
into (2), we obtain

yj =

NT−1∑
i=0

Lji−1∑
l=0

Fdiag{hjil }Aldiag{ejφi}si +wj , (6)

where wj � ςςςj + vj with the kth element wj(k) being
a complex Gaussian random variable with zero mean and
unknown variance σ2

j (k) � σ2
ς,j(k) + σ2

v .

B. Reformulation With Basis Expansion Model

From (5) it is observed that the number of unknowns in
Hji is NLji, which is much larger than the number of
received samples. This leads to identifiability problem for
direct channel estimation. However, considering the fact that
time correlation of channel exists during one OFDM symbol

period, the basis expansion model (BEM) [33], [34] can be
adopted to represent the channels as

hji(n, l) =

Q∑
q=0

βjiq,lbn,q + ξji(n, l), (7)

where βjiq,l is the coefficient of BEM associated with the
channel between the ith MT and the jth receive antenna at
the BS; bn,q represents the basis that captures time variations
of channel; Q + 1 is the number of the basis and ξji(n, l)
represents the BEM modeling error. BEM is motivated by the
observation that the temporal (n) variation of hji(n, l) is usu-
ally rather smooth due to the low-pass nature of the channel’s
band-limited Doppler spread, and therefore, {bn,q}Qq=0 can be
chosen as a small set (i.e., Q 	 N ) of smooth functions.
Motivated by the fact that the BEM modeling error is usually
on the order of 10−4 [34], [35], which is much smaller than
the typical received noise level, using (7) the hjil in (5) can
be expressed as

hjil = Bβjil , (8)

where B = [b0, ...,bQ] with bq = [b0,q, ..., bN−1,q]
T and

βjil = [βji0,l, ..., β
ji
Q,l]

T . It is observed from (8) that the number
of channel parameters to be estimated is significantly reduced.

Substituting (8) into (6), we obtain a BEM-reformulated
expression as

yj = Γ[βj ,φ]s+wj , (9)

where Γ[βj ,φ] � [
∑Lj0−1

l=0 Fdiag{Bβj0l }Aldiag{ejφ0}, ... ,∑Lj,NT −1

l=0 Fdiag{Bβj,NT−1
l }Aldiag{ejφNT −1}] with βj =

[(βj0)T , ..., (βj,NT−1)T ]T andβji=[(βji0 )
T , ..., (βjiLji−1)

T ]T ,
φ = [(φ0)T , ...,(φNT−1)T ]T is the PN vector and s =
[(s0)T , ...,(sNT−1)T ]T . Stacking all the received signals from
NR receive antennas at the BS, a BEM-reformulated expres-
sion that explicitly shows the dependence of the unknown data
xd can be obtained as

y = Θ[β,φ]x+w, (10)

where y = [(y0)T , ..., (yNR−1)T ]T , Θ[β,φ] � [ΓH [β0,φ],
...,ΓH [βNR−1,φ]]H , β = [(β0)T , ..., (βNR−1)T ]T , w =
[(w0)T , ..., (wNR−1)T ]T and

x = [(x0)T , ..., (xNT−1)T ]T

= Bldiag{FHE0
d, ...,F

HENT−1
d }xd

+ Bldiag{FHE0
p, ...,F

HENT−1
p }xp

� Edxd +Epxp, (11)

where xd = [(x0
d)
T , ..., (xNT−1

d )T ]T and xp =
[(x0

p)
T , ..., (xNT−1

p )T ]T .
On the other hand, substituting (8) into (6), another BEM-

reformulated expression can also be obtained as

yj = Gj [φ,x]Mjβj +wj , (12)

where Gj [φ,x] � [�j [φ0,x0], ..., [�j [φNT−1,xNT−1]] with
�j [φi,xi] � [Fdiag{A0diag{ejφi}FHxi}, ...,Fdiag{ALji−1

diag{ejφi}FHxi}], Mj�Bldiag{ILj0⊗B, ..., ILj,NT−1⊗B}.
Stacking all the received signals from NR receive antennas at
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Hji=

⎡
⎢⎢⎢⎢⎢⎢⎣

hji(0, 0) 0 . . . hji(0, Lji − 1) . . . hji(0, 1)
...

...
. . .

...
hji(Lji − 1, Lji − 1) hji(Lji − 1, Lji − 2) . . . hji(Lji − 1, 0) 0 . . .

...
...

. . .
...

0 . . . hji(N − 1, Lji − 1) hji(N − 1, Lji − 2) . . . hji(N − 1, 0)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3)

the BS, an equation that explicitly shows the dependence of
the unknown parameter β can be obtained as

y = Ξ[φ,x]β +w, (13)

whereΞ[φ,x]=Bldiag{G0[φ,x]M0, ...,GNR−1[φ,x]MNR−1}.

C. PN Modeling

In this paper, the fact that multiple MTs supported by their
own oscillators are reflected by the distinct PN process Pi

for each i. On the other hand, the oscillator used at the BS
is usually sufficiently stable to disregard its PN. Since PN
evolves much slower than the modulation rate, (6) can be
expressed alternatively using the small PN approximation [15],
[36] exp{jφi(n)} ≈ 1 + jφi(n) as

yj =

NT−1∑
i=0

Lji−1∑
l=0

Fdiag{hjil }Aldiag{si}(1N + jφi) +wj .

(14)
Substituting (8) into (14) and stacking all the received signals
fromNR receive antennas at the BS, an equation that explicitly
shows the dependence of the unknown parameter φ can be
obtained as

y = Ω[β,x](1NTN + jφ) +w, (15)

where Ω[β,x] � Bldiag{Υ[β0,x], ...,Υ[βNR−1,x]}(1NR ⊗
INTN )withΥ[βj ,x] � [

∑Lj0−1
l=0 Fdiag{Bβj0l }Aldiag{FHx0},

...,
∑Lj,NT −1

l=0 Fdiag{Bβj,NT−1
l }Aldiag{FHxNT−1}].

Remark 1: We have developed three equivalent models in
(10), (13) and (15) for the received signal y with dimension
NRN . They all depend on the unknown parameters xd with
dimension NTNd (embedded in x with dimension NTN ),
β with dimension (Q + 1)

∑NR−1
j=0

∑NT−1
i=0 Lji, and φ with

dimension NTN . Their usages will be apparent in later
sections.

D. Prior Distributions for the Unknown Quantities

In the Bayesian framework, all the unknown quantities
are assumed to be random variables, with each described by
a prior distribution. It is assumed that the channel follows
Rayleigh fading and each channel tap is independent. The
BEM coefficient β can be shown to be complex Gaussian
variable [33] with zero mean and correlation matrix Rβ:

p(β) =
1

π(Q+1)Ldet(Rβ)
exp{−βHR−1

β β}, (16)

where L �
∑NR−1
j=0

∑NT−1
i=0 Lji represents the sum of all the

channel lengths. The expression for Rβ is derived in Appendix
A and is given by Eqs. (43) and (45). In case we do not

have the statistical information of channel, we can set Rβ =
∞I(Q+1)L, which is an uninformative prior.

For PN φ, two models are adopted in the literature. 1)
When the system is frequency-locked [8], the resulting PN
is modeled as a zero-mean, nonstationary and infinite-power
Wiener process. 2) When the system is phase-locked [9], the
resulting PN is modeled as a zero-mean, stationary and finite-
power stochastic process. Since in both cases φ is Gaussian
distributed with zero mean, the prior distribution for φ is given
by

p(φ) =
1

(2π)
NT N

2 det(Rφ)
1
2

exp{−1

2
φTR−1

φ φ}, (17)

where Rφ = Bldiag{Rφ0 , ...,RφNT −1} with the specific
expression for Rφi determined by the PN model and is
documented in [8], [9].

For the prior distribution of the data xd, we set equal
preference to all constellation points since we do not have
knowledge on its value before observing the received signal.
Furthermore, due to the independent property among data
elements, we have

p(xd) =
1

(m)NTNd

NT−1∏
i=0

Nd−1∏
k=0

{ ∑
x̄i
d(k)∈c

δ
(
xid(k)− x̄id(k)

)}
,

(18)
where m is the modulation order and c is the set of constel-
lation points of the modulation.

For the unknown interference plus noise power at the jth

receive antenna and kth subcarrier σ2
j (k), an inverse Gamma

prior distribution with shape parameter ak,j and scale param-
eter bk,j is adopted. With the fact that σ2

j (k) are independent
for different j and k, we have

p(σ2) =

NR−1∏
j=0

N−1∏
k=0

b
ak,j

k,j

Γ(ak,j)

(
σ2
j (k)

)−ak,j−1
exp

(− bk,j
σ2
j (k)

)
,

(19)
where Γ(·) denotes the gamma function and the
NRN × 1 interference plus noise power vector σ2 =
[(σ2

0)
T , ..., (σ2

NR−1)
T ]T with σ2

j = [σ2
j (0), ..., σ

2
j (N − 1)]T .

The inverse Gamma distribution has been adopted to describe
the distribution of inter-cell interference in severely fading
channels [37] and the power of interference in radar systems
[38]. In the absence of prior information, small values
of the shape parameter ak,j and the scale parameter bk,j
can be chosen (e.g., set ak,j = bk,j = 10−6) to produce
uninformative prior for σ2.

III. ITERATIVE SIGNAL DETECTION WITH UNKNOWN

DSCS, NBIS AND PNS

It is observed from (10) and (11) that we aim to detect xd
in the presence of unknown parameters β,φ and unknown
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variance σ2 of w. The optimal estimate of xd is to maximize
the marginalized posterior distribution p(xd|y) which is given
by

p(xd|y) =
∫
φ

∫
σ2

∫
β

p(β,σ2,φ,xd|y)dβdσ2dφ. (20)

However, this posterior distribution is generally intractable and
cannot be calculated analytically due to the high-dimensional
integrals associated with it. One way to solve this problem is
to approximate the marginalized posterior distribution using
particles, such as in MCMC method [39]. However, these
Monte-Carlo based statistical methods require high complexity
due to the generation and processing of a large number of
samples for approximating various distributions. On the other
hand, in this paper, we are going to make the following
variational approximation [15]

p(β,σ2,φ,xd|y) ≈ Q(β,σ2,φ,xd), (21)

where Q(β,σ2,φ,xd) is the optimal distributional ap-
proximation chosen to minimize the Kullback-Leibler (KL)
divergence [27] (also known as relative entropy) from
p(β,σ2,φ,xd|y), given by Eq. (22) at the top of the next
page. To reduce the overall computational complexity of
inference and in order to obtain a tractable approximation,
conditional independence (also known as the mean field
approximation) is enforced as a functional constraint in the
variational distribution [40], i.e.,

Q(β,σ2,φ,xd) = Q1(β)Q2(σ
2)Q3(φ)Q4(xd). (23)

In essence, the approximation forces β,σ2,φ,xd to be mu-
tually independent conditioned on y. Substituting (21) and
(23) into (20), we directly have p(xd|y) ≈ Q4(xd), and
therefore the optimal estimate of xd over Q4(xd) is a close
approximation to the optimal estimate of xd over p(xd|y).

A. Computation of the KL Divergence

Using Bayes’ rule, and due to the independence among
channel, interference plus noise, PN and transmitted data, we
have

p(β,σ2,φ,xd|y) ∝ p(y|β,σ2,φ,xd)p(β)p(σ
2)p(φ)p(xd),

(24)
where the normalization p(y) does not depend on the unknown
variables, and therefore can be dropped. Substituting (24)
into (22), and making use of the conditional independence
constraint (23), we obtain Eq. (25) at the top of the next page.

It is observed from (25) that for the computation of the
KL divergence, one key issue remains to be addressed:
the choice of the form of the variational distributions
Q1(β),Q2(σ

2),Q3(φ) and Q4(xd). The key is to choose
a distributional form that makes a good approximation to
the exact joint posterior distribution and meanwhile provides
analytical tractability during the Bayes update. In this paper,
Q1(β) and Q3(φ) are chosen to be in Gaussian forms. That
is,

Q1(β)=
1

π(Q+1)Ldet(Ψβ)
exp

{−(β−mβ)
HΨ−1

β (β−mβ)
}
,

(26)

where mβ and Ψβ are the unknown mean vector and covari-
ance matrix for β, respectively; and

Q3(φ)=
1

(2π)
NT N

2 det(Ψφ)
1
2

exp
{−1

2
(φ−mφ)

TΨ−1
φ (φ−mφ)

}
,

(27)
where mφ and Ψφ are the unknown mean vector and covari-
ance matrix for φ, respectively. In view of the discrete nature
of the data, the variational distribution for xd is chosen as

Q4(xd) = δ(xd − x̃d), (28)

where the vector Dirac delta function δ(·) has the properties∫
δ(xd − x̃d)dxd = 1 and

∫
δ(xd − x̃d)f(xd)dxd = f(x̃d)

for any smooth function f(·). Furthermore, the entries of σ2

are chosen to be distributed according to an inverse-gamma
distribution with the unknown shape parameter ãk,j and scale
parameter b̃k,j as

Q2(σ
2) =

NR−1∏
j=0

N−1∏
k=0

b̃
ãk,j

k,j

Γ(ãk,j)

(
σ2
j (k)

)−ãk,j−1
exp

(− b̃k,j
σ2
j (k)

)
.

(29)
Substituting the prior distributions (16)-(19) and the vari-

ational distributions (26)-(29) into (25), it is shown in Ap-
pendix B that after dropping those irrelevant terms, the
KL divergence can be expressed as Eq. (30) in the middle
of the next page, where ψ(ãk,j) =

∂logΓ(ãk,j)
∂ãk,j

, Λσ2 =

Bldiag{Λ0
σ2 , ...,ΛNR−1

σ2 } with Λj
σ2 = diag{ ã0,j

b̃0,j
, ...,

ãN−1,j

b̃N−1,j
},

ρρρφ = (1NTN + jmφ), ηz and μz are the zth eigen-
value and corresponding eigenvector of Ψφ, i.e., Ψφ =∑NTN−1

z=0 ηzμzμ
T
z . Accordingly, the goal of minimizing

KL(Q1(β)Q2(σ
2)Q3(φ)Q4(xd)||p(β,σ2,φ,xd|y)) reduces

to seeking the values for the unknown parameters of the vari-
ational distributions mβ,Ψβ, ãk,j , b̃k,j , mφ, Ψφ, x̃d. After
we obtain an estimate of all these parameters, and due to
p(xd|y) ≈ Q4(xd), the data estimate directly equals x̃d.

B. Iterative Minimization of the KL Divergence

Jointly optimizing all parameters in the KL divergence
is a challenging task, as it is a complicated function with
coupled dependences among unknown variables. Fortunately,
the estimates of the unknown parameters can be obtained
iteratively by minimizing the KL divergence with respect to
one set of the parameters at a time and fixing all the others
to their last estimated values. The update at the qth iteration
follows as:

1) Updating mβ and Ψβ given ˆ̃aq−1
k,j ,

ˆ̃bq−1
k,j ,m̂

q−1
φ ,Ψ̂q−1

φ ,x̂q−1
d :

Setting the first derivative of F with respect to Ψβ to zero,
we obtain Ψ̂q

β, given by Eq. (31) in the middle of the next

page, where Λ̂
q−1

σ2 = Bldiag{Λ̂0,q−1

σ2 , ..., Λ̂
NR−1,q−1

σ2 } with

Λ̂
j,q−1

σ2 = diag{ ˆ̃aq−1
0,j

ˆ̃
bq−1
0,j

, ...,
ˆ̃aq−1
N−1,j

ˆ̃
bq−1
N−1,j

}, ρ̂ρρq−1
φ = 1NTN + jm̂q−1

φ ,

η̂q−1
z and μ̂q−1

z are the zth eigenvalue and corresponding
eigenvector of Ψ̂q−1

φ , respectively. For m̂q
β, it can be obtained

by setting the first derivative of F with respect to mβ to zero:

m̂q
β = Ψ̂q

βΞ
H [ρ̂ρρq−1

φ ,Edx̂
q−1
d +Epxp]Λ̂

q−1

σ2 y. (32)
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KL
(Q(β,σ2,φ,xd)||p(β,σ2,φ,xd|y)

)
=

∫
xd

∫
φ

∫
σ2

∫
β

Q(β,σ2,φ,xd)log
Q(β,σ2,φ,xd)

p(β,σ2,φ,xd|y)dβdσ
2dφdxd. (22)

KL
(Q1(β)Q2(σ

2)Q3(φ)Q4(xd)||p(β,σ2,φ,xd|y)
)

∝
∫
xd

∫
φ

∫
σ2

∫
β

Q1(β)Q2(σ
2)Q3(φ)Q4(xd)log

Q1(β)Q2(σ
2)Q3(φ)Q4(xd)

p(y|β,σ2,φ,xd)p(β)p(σ2)p(φ)p(xd)
dβdσ2dφdxd

=

∫
β

Q1(β)logQ1(β)dβ +

∫
σ2

Q2(σ
2)logQ2(σ

2)dσ2 +

∫
φ

Q3(φ)logQ3(φ)dφ+

∫
xd

Q4(xd)logQ4(xd)dxd

−
∫
β

Q1(β)logp(β)dβ −
∫
σ2

Q2(σ
2)logp(σ2)dσ2 −

∫
φ

Q3(φ)logp(φ)dφ−
∫
xd

Q4(xd)logp(xd)dxd

−
∫
xd

∫
φ

∫
σ2

∫
β

Q1(β)Q2(σ
2)Q3(φ)Q4(xd)logp(y|β,σ2,φ,xd)dβdσ

2dφdxd. (25)

KL
(Q1(β)Q2(σ

2)Q3(φ)Q4(xd)||p(β,σ2,φ,xd|y)
)

� F(mβ,Ψβ, ãk,j , b̃k,j ,mφ,Ψφ, x̃d)

∝ −log det(Ψβ) +

NR−1∑
j=0

N−1∑
k=0

[
(ãk,j + 1)ψ(ãk,j)− logb̃k,j − ãk,j − logΓ(ãk,j)

]− 1

2
log det(Ψφ) + Tr

{
R−1

β (mβm
H
β +Ψβ)

}

−
NR−1∑
j=0

N−1∑
k=0

[
(−ak,j − 1)(logb̃k,j − ψ(ãk,j))− ãk,j

b̃k,j
bk,j

]− NT−1∑
i=0

Nd−1∑
k=0

log
{ ∑
x̄i
d(k)∈c

δ
(
x̃id(k)− x̄id(k)

)}

+

NR−1∑
j=0

N−1∑
k=0

[
logb̃k,j − ψ(ãk,j)

]
+ yHΛσ2y− 2�{yHΛσ2Ξ[ρρρφ,Edx̃d +Epxp]mβ

}
+

1

2

(
Tr{R−1

φ Ψφ}+mT
φR

−1
φ mφ

)

+mH
β ΞH [ρρρφ,Edx̃d+Epxp]Λσ2Ξ[ρρρφ,Edx̃d+Epxp]mβ+

NTN−1∑
z=0

ηzm
H
β ΞH [μz,Edx̃d+Epxp]Λσ2Ξ[μz,Edx̃d+Epxp]mβ

+Tr{ΞH [ρρρφ,Edx̃d+Epxp]Λσ2Ξ[ρρρφ,Edx̃d+Epxp]Ψβ}+Tr{
NTN−1∑
z=0

ηzΞ
H [μz,Edx̃d+Epxp]Λσ2Ξ[μz,Edx̃d+Epxp]Ψβ}.

(30)

Ψ̂q
β =

(
R−1

β +ΞH [ρ̂ρρq−1
φ ,Edx̂

q−1
d +Epxp]Λ̂

q−1

σ2 Ξ[ρ̂ρρq−1
φ ,Edx̂

q−1
d +Epxp]

+

NTN−1∑
z=0

η̂q−1
z ΞH [μ̂q−1

z ,Edx̂
q−1
d +Epxp]Λ̂

q−1

σ2 Ξ[μ̂q−1
z ,Edx̂

q−1
d +Epxp]

)−1

. (31)

2) Updating ãk,j and b̃k,j given m̂q
β, Ψ̂

q
β, m̂

q−1
φ , Ψ̂q−1

φ , x̂q−1
d :

Setting the first derivative of F with respect to ãk,j and
b̃k,j to zero and solving them simultaneously, it is shown in
Appendix C that

ˆ̃aqk,j = ak,j + 1, (33)

and ˆ̃
bqk,j given by Eq. (34) at the top of the next page, where

λ̂qr and ν̂qr are defined from the eigen-decomposition Ψ̂q
β =∑(Q+1)L−1

r=0 λ̂qr ν̂
q
r(ν̂

q
r)
H .

3) Updating mφ and Ψφ given m̂q
β, Ψ̂

q
β,

ˆ̃aqk,j ,
ˆ̃
bqk,j , x̂

q−1
d :

Setting the first derivative of F with respect to Ψφ to zero

and using the equivalent expressions between (13) and (15),
we obtain Ψ̂q

φ, given by Eq. (35) at the top of the next page.
On the other hand, setting the first derivative of F with respect
to mφ to zero and using the equivalent expressions between
(13) and (15), we obtain m̂q

φ, given by Eq. (36) at the top of
the next page.

4) Updating x̂d given m̂q
β, Ψ̂

q
β ,

ˆ̃aqk,j ,
ˆ̃
bqk,j , m̂

q
φ, Ψ̂

q
φ:

For minimizing F with respect to x̃d, the term∑NT−1
i=0

∑Nd−1
k=0 log{∑x̄i

d(k)∈c δ(x̃
i
d(k)−x̄id(k))} accounts for

the constellation constraint. But a multidimensional exhaus-
tive search over all possible discrete data combinations is a
formidable task. Here, we propose a complexity-reduced linear
data estimate by relaxing x̃d to be continuous and setting the
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ˆ̃bqk,j = bk,j + |y(k + jN)|2 − 2�
{
y∗(k + jN)

[
Ξ[ρ̂ρρq−1

φ ,Edx̂
q−1
d +Epxp]m̂

q
β

]
(k + jN)

}

+
∣∣∣[Ξ[ρ̂ρρq−1

φ ,Edx̂
q−1
d +Epxp]m̂

q
β

]
(k + jN)

∣∣∣2 +NTN−1∑
z=0

η̂q−1
z

∣∣∣[Ξ[μ̂q−1
z ,Edx̂

q−1
d +Epxp]m̂

q
β

]
(k + jN)

∣∣∣2

+

(Q+1)L−1∑
r=0

λ̂qr

∣∣∣[Ξ[ρ̂ρρq−1
φ ,Edx̂

q−1
d +Epxp]ν̂

q
r

]
(k+jN)

∣∣∣2+NTN−1∑
z=0

(Q+1)L−1∑
r=0

η̂q−1
z λ̂qr

∣∣∣[Ξ[μ̂q−1
z ,Edx̂

q−1
d +Epxp]ν̂

q
r

]
(k+jN)

∣∣∣2.
(34)

Ψ̂q
φ =

(
R−1

φ + 2
(
ΩH [m̂q

β,Edx̂
q−1
d +Epxp]Λ̂

q

σ2Ω[m̂q
β,Edx̂

q−1
d +Epxp]

+

(Q+1)L−1∑
r=0

λ̂qrΩ
H [ν̂qr,Edx̂

q−1
d +Epxp]Λ̂

q

σ2Ω[ν̂qr,Edx̂
q−1
d +Epxp]

))−1

. (35)

m̂q
φ = 2Ψ̂q

φ×
(
−jΩH [m̂q

β,Edx̂
q−1
d +Epxp]Λ̂

q

σ2y + jΩH [m̂q
β,Edx̂

q−1
d +Epxp]Λ̂

q

σ2Ω[m̂q
β,Edx̂

q−1
d +Epxp]1NTN

+

(Q+1)L−1∑
r=0

λ̂qrjΩ
H [ν̂qr,Edx̂

q−1
d +Epxp]Λ̂

q

σ2Ω[ν̂qr,Edx̂
q−1
d +Epxp]1NTN

)
. (36)

x́qd =
(
EHd Θ

H [m̂q
β, ρ̂ρρ

q
φ]Λ̂

q

σ2Θ[m̂q
β, ρ̂ρρ

q
φ]Ed +

(Q+1)L−1∑
r=0

λ̂qrE
H
d ΘH [ν̂qr, ρ̂ρρ

q
φ]Λ̂

q

σ2Θ[ν̂qr, ρ̂ρρ
q
φ]Ed

+

NTN−1∑
z=0

η̂qzE
H
d ΘH [m̂q

β, μ̂
q
z ]Λ̂

q

σ2Θ[m̂q
β, μ̂

q
z]Ed +

NTN−1∑
z=0

(Q+1)L−1∑
r=0

η̂qz λ̂
q
rE

H
d Θ

H [ν̂qr, μ̂
q
z]Λ̂

q

σ2Θ[ν̂qr, μ̂
q
z]Ed

)−1

×
(
EHd ΘH [m̂q

β, ρ̂ρρ
q
φ]Λ̂

q

σ2y −EHd Θ
H [m̂q

β, ρ̂ρρ
q
φ]Λ̂

q

σ2Θ[m̂q
β, ρ̂ρρ

q
φ]Epxp

−
(Q+1)L−1∑

r=0

λ̂qrE
H
d ΘH [ν̂qr, ρ̂ρρ

q
φ]Λ̂

q

σ2Θ[ν̂qr, ρ̂ρρ
q
φ]Epxp −

NTN−1∑
z=0

η̂qzE
H
d ΘH [m̂q

β, μ̂
q
z ]Λ̂

q

σ2Θ[m̂q
β, μ̂

q
z]Epxp

−
NTN−1∑
z=0

(Q+1)L−1∑
r=0

η̂qz λ̂
q
rE

H
d Θ

H [ν̂qr, μ̂
q
z]Λ̂

q

σ2Θ[ν̂qr, μ̂
q
z]Epxp

)
. (37)

first derivative of F (without the term corresponding to the
constellation constraint) with respect to x̃d to zero. Using the
equivalent expressions between (10) and (13), the linear data
estimate can be obtained as Eq. (37) in the middle of this page.
Then the constellation constraint is enforced by quantizing x́qd
as x̂qd = Qant(x́qd).

Remark 2: The computational complexity of each iteration
is dominated by (31), (35) and (37). In particular, in (31),
the complexity mainly comes from the (Q+1)L× (Q+1)L
matrix inversion. In (35), there are two eigen-decompositions
of matrices with size NTN×NTN (Ψ̂q−1

φ and Ψ̂q
φ), an eigen-

decomposition of Ψ̂q
β with size (Q + 1)L × (Q + 1)L and

one NTN × NTN matrix inversion. In (37), the complexity
is dominated by the NTNd × NTNd matrix inversion. For
an M ×M matrix, the complexities of inversion and eigen-
decomposition are both O(M3). Therefore, the computational
complexity for each iteration of the proposed VBI-based

algorithm is O(2((Q+1)L)3+3(NTN)3+(NTNd)
3). Since

Q 	 N and Nd < N , the computational complexity is
dominated by the term (NTN)3, and the overall computational
complexity depends on the number of iterations.

C. Summary and Initialization

In summary, the proposed algorithm proceeds as follows:
1) The priori distributions of the DSC, PN, data and NBI are
assumed to be known and are given by (16)-(19), respectively.
2) The forms of variational distributions of the unknown
parameters are assumed in (26)-(29), with distributional pa-
rameters to be optimized. Conditional independence (i.e.,
mean-field approximation) among variational distributions is
applied when KL divergence is computed in (30).

3) Assuming an initial value for
ˆ̃a0k,j

ˆ̃b0
k,j

, m̂0
φ, Ψ̂

0
φ, x̂

0
d, the un-

known parameters of variational distributions are iteratively
estimated by minimizing the KL divergence as (31)-(37).
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4) After convergence, the desired data estimate can be obtained
using (37).

This iterative process is guaranteed to converge monoton-
ically to at least a stationary point [28], [29]. From (37) it
can be observed that in the proposed signal detection, the ICIs
caused by DSCs, the interferences result from NBIs as well as
the CPEs and ICIs caused by PNs are all iteratively eliminated.

To provide an initial estimate, recalling (10), (11) and (13),
we have

y = Ξ[φ,Epxp]β +Θ[β,φ]Edxd +w. (38)

By collecting the samples in y corresponding to pilot symbols,
and treating the term containing xd as interference, the least
squares (LS) estimate of β is obtained as

β̂
0
=

(
ΞHp [m̂0

φ,Epxp]Ξp[m̂
0
φ,Epxp]

)−1
ΞHp [m̂0

φ,Epxp]yp,
(39)

where the elements of yp and the rows of Ξp are taken from
y and Ξ, respectively, with corresponding positions of pilot;
and m̂0

φ is taken as the prior mean of φ, i.e., m̂0
φ = 0NTN .

Substituting (39) into (10), the initial signal detection is thus
obtained as

x̂0
d = Qant

((
EHd ΘH [β̂

0
, m̂0

φ]Θ[β̂
0
, m̂0

φ]Ed
)−1

×EHd ΘH [β̂
0
, m̂0

φ]
(
y −Θ[β̂

0
, m̂0

φ]Epxp
))
. (40)

For the initial value Ψ̂0
φ, we set Ψ̂0

φ to be an NTN×NTN all-

zero matrix. Finally, since ãk,j

b̃k,j
= E{ 1

σ2
j (k)

}, where σ2
j (k) is

the power of the (k+ jN)th element in w, the initial value of
ˆ̃ak,j

ˆ̃
bk,j

can be set as
ˆ̃a0k,j

ˆ̃
b0k,j

= 1
σ̂2
j (k)

, with σ̂2
j (k) = |w(k+jN)|2 =

|[y −Ξ[m̂0
φ,Edx̂

0
d +Epxp]β̂

0
](k + jN)|2.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed algorithm
for signal detection operating over unknown DSCs in the
presence of multiple NBIs and PNs is demonstrated by Monte
Carlo simulations. There are 4 single-antenna MTs (NT = 4)
and a BS with 4 receive antennas (NR = 4). Each OFDM
symbol has 64 subcarriers (N = 64) and the length of the
CP is Ncp = 8. The signal bandwidth is 20 MHz and the
sampling interval Ts is thus 50 ns. The normalized maximal
Doppler shift is set as NfdTs = 0.151, where fd represents
the maximum Doppler frequency. The PN is generated by
the true PN model ejφ

i

, and the Wiener PN is adopted with
the PN rate [8] βiNTs = 10−3 for each MT, where βi is
the two-side 3-dB linewidth of the Lorentzian-shaped PSD of
the oscillator. The received OFDM-V-MIMO signal at each
receive antenna of the BS is affected by multiple NBIs. The
multiple NBIs add Gaussian disturbances to the received signal
and are randomly positioned in the signal bandwidth, affecting
4 contiguous subcarriers for each receive antenna at the BS.
Notice that the positions of interferences at different receive
antennas are in general different. The signal-to-interference
ratio (SIR) over the jammed subcarriers is 10log(Es/σ2

ς ) with

1Similar conclusions can be drawn for other normalized maximal Doppler
shift (e.g., 0.075 and 0.03), and the corresponding results are not presented
here.
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Fig. 2. Convergence performance of the proposed method (4 NBIs, PN
rate=10−3 and normalized Doppler spread=0.15).
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Fig. 3. Performance of signal detection versus SNR (4 NBIs, PN rate=10−3

and normalized Doppler spread=0.15).

Es = E{|xid|2} denotes the symbol energy and σ2
ς is assumed

to be constant over the observation period. The signal-to-
noise ratio (SNR) is defined as 10log(Es/σ2

v). Without loss
of generality, the channel for each MT has three paths with an
exponential power delay profile, namely �2

l = exp(−κl)((1−
exp(−κ))/(1 − exp(−3κ))), l = 0, 1, 2 with κ = 1/3. Each
path coefficient follows a complex Gaussian distribution. The
data symbols are modulated by quadrature phase-shift keying
(QPSK) with unit power. The pilot cluster follows the structure
from [41]. More specifically, seven pilot clusters are used for
each MT. The clusters are equally spaced among subcarriers
and in each cluster one nonzero pilot is guarded by one
zero pilot on each side. The nonzero pilots are generated as
zero-mean complex Gaussian random variables with power
three times that of data symbols. Furthermore, the generalized
complex exponential BEM (GCE-BEM) [34] is adopted and
the statistical information of channel is assumed to be known
such that the prior covariance derived in Appendix A can be
computed.
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Fig. 4. Performance comparison between the proposed method and method
in [23] (PN rate=10−3 and normalized Doppler spread=0.15).

Figure 2 presents the convergence performance of the pro-
posed iterative algorithm for the 4 NBIs case with SIR=0dB
and 15dB. From Fig. 2, it can be seen that the bit-error-rates
(BERs) improve significantly in the first few iterations and
converge to stable values within 15 iterations. For the rest of
the figures, the proposed iterative algorithm is terminated at
15 iterations.

Figure 3 shows the signal detection performance versus
SNRs for the proposed initialization, and the proposed iterative
algorithm after convergence. The performance of the ideal case
which assumes perfect CSI, no PN, and known positions and
powers of NBIs plus AWGN is also shown for comparison. It
can be seen that the iterative algorithm improves with respect
to the initialization significantly, especially at high SNRs.
After convergence, the performance of the proposed iterative
signal detection algorithm is very close to that of the ideal
case, which requires a lot more information.

Figure 4 compares the performance of the proposed al-
gorithm to that of [23]. Also based on VBI, [23] proposes
an iterative algorithm jointly estimate DSC and detect data
in single-input single-output (SISO) system, assuming the
noise variance is known. For the purpose of comparison,
the method in [23] was extended to MIMO system. It can
be seen from Fig. 4 that in case of no NBI, the proposed
algorithm, which not only jointly estimate channel and detect
data but also deals with PNs, performs better than that of [23].
This shows the importance of PN compensation in OFDM
systems. Furthermore, in case of 4 NBIs with SIR=0dB, the
proposed algorithm also performs better than that of [23],
with performance gap more significant than the case with no
NBI. This shows the importance of NBI mitigation in OFDM
systems.

Figure 5 compares the performance of the proposed algo-
rithm to that of [16], which tackles the PN by estimating and
eliminating the CPE, assuming the CSI is perfectly known. For
fair comparison, CSI is also assumed to be perfectly known
for the proposed algorithm. It can be seen from Fig. 5 that
for both cases of no NBI and 4 NBIs, the proposed algorithm
performs much better than that of [16]. In fact, with only
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Fig. 5. Performance comparison between the proposed method and method
in [16] (PN rate=10−3 and normalized Doppler spread=0.15).
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Fig. 6. Performance comparison between the proposed method and method
in [20] (4 NBIs with SIR=0dB and normalized Doppler spread=0.15).

a single iteration, the proposed algorithm already outperforms
the method from [16]. The reason is that the proposed scheme
not only compensates the CPEs, but also the ICIs introduced
by the PNs. This shows the importance of estimating and
compensating the whole realization of PNs.

Finally, Fig. 6 compares the performance of the proposed
algorithm to that of [20]. Based on EM, [20] proposes an iter-
ative algorithm jointly estimate NBI and detect data in single-
input single-output (SISO) system, assuming the channel is
static and perfectly known. For fair comparison, the channel
is also assumed to be perfectly known for the proposed
algorithm. For the purpose of comparison, the method in [20]
was extended to MIMO system. It can be seen from Fig. 6
that in case of no PN, the proposed algorithm, which not only
jointly estimate NBI and detect data but also deals with ICI
induced by high mobility, performs better than that of [20]. In
case of PN with PN rate=10−3, the proposed algorithm also
performs significantly better than that of [20].
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V. CONCLUSION

In this paper, we have addressed the challenging problem
of signal detection for OFDM-V-MIMO systems operating
over DSCs in the presence of multiple unknown NBIs and
PNs. Based on the VBI framework, an iteratively updating
algorithm for joint signal detection, DSC, NBI and PN esti-
mations has been developed. Simulation results showed that
after convergence, the performance of the proposed signal
detection algorithm is very close to that of the ideal case
which assumes perfect CSI, no PN, and known positions and
powers of NBIs plus AWGN. Moreover, simulation results
showed that the performance of the proposed signal detection
algorithm outperforms other existing methods.

APPENDIX A
DERIVATION OF Rβ IN (16)

From (7) we have

h = Cβ + ξξξ, (41)

where h = [(h0)T , ..., (hNR−1)T ]T with hj = [(hj0)T , ... ,
(hj,NT−1)T ]T and hji = [(hji0 )

T , ..., (hjiLji−1)
T ]T , the NL×

(Q + 1)L matrix C = Bldiag{M0, ...,MNR−1} with Mj �
Bldiag{ILj0 ⊗ B, ..., ILj,NT −1 ⊗ B}, ξξξ represents the corre-
sponding BEM modeling error, which is to be minimized in
the MSE sense. The optimal BEM coefficient is given by the
LS solution

β = (CHC)−1CHh. (42)

Using (42), we have

Rβ = E{ββH}
= (CHC)−1CH

E{hhH}C(CHC)−1. (43)

Since the channel follows Rayleigh fading and the correlation
of different channel paths is given by

E

{
hj1i1(n1, l1)

(
hj2i2(n2, l2)

)∗}
= �2

l1δ(j1 − j2)δ(i1 − i2)

× δ(l1 − l2)J0
(
2πfd(n1 − n2)Ts

)
, (44)

where �2
l denotes the average power of the lth path; J0(·)

represents the zero-order Bessel function of the first kind;
fd represents the maximum Doppler frequency and Ts is the
sample interval. Expressing (44) in the form of E{hhH}, we
obtain

E{hhH} = Bldiag{Rh0,0, ...,Rh0,NT −1 , ...,

RhNR−1,0 , ...,RhNR−1,NT −1}, (45)

where Rhji = diag{�2
0, ..., �

2
Lji−1} ⊗ J and the (m,n)th

element of the N×N matrix J is J0
(
2πfd(m−n)Ts

)
. Finally,

substituting (45) into (43), the correlation matrix Rβ can be
obtained.

APPENDIX B
DERIVATION OF (30)

We derive term-by-term in (25). First, using the variational
distributions (26)-(29), the first four terms of (25) can be
computed as

∫
β

Q1(β)logQ1(β)dβ

= −(Q+ 1)Llogπ − log det(Ψβ)−mH
β Ψ−1

β mβ

+ 2�
{
Eβ

{
βH

}
Ψ−1

β mβ

}
− Tr

{
Ψ−1

β Eβ

{
ββH

}}
= −log det(Ψβ)− (Q+ 1)Llogπ − (Q+ 1)L;

(46)

∫
σ2

Q2(σ
2)logQ2(σ

2)dσ2

=

NR−1∑
j=0

N−1∑
k=0

[
ãk,j logb̃k,j + (−ãk,j − 1)Eσ2

j (k)

{
logσ2

j (k)
}

− Eσ2
j (k)

{ 1

σ2
j (k)

}
b̃k,j − logΓ(ãk,j)

]

=

NR−1∑
j=0

N−1∑
k=0

[
(ãk,j+1)ψ(ãk,j)−logb̃k,j−ãk,j−logΓ(ãk,j)

]
,

(47)

where ψ(ãk,j) =
∂logΓ(ãk,j)
∂ãk,j

;

∫
φ

Q3(φ)logQ3(φ)dφ

= −1

2
log det(Ψφ)− NTN

2
log2π − 1

2

(
Tr
{
Ψ−1

φ Eφ{φφT }
}

−mT
φΨ

−1
φ Eφ{φ} − Eφ{φ}Ψ−1

φ mφ +mT
φΨ

−1
φ mφ

)
= −1

2
log det(Ψφ)− NTN

2
log2π − NTN

2
;

(48)

∫
xd

Q4(xd)logQ4(xd)dxd = 0. (49)

For the next four terms in (25), they make use of the
variational distributions (26)-(29) and the prior distributions
(16)-(19). Straightforward computations give

∫
β

Q1(β)logp(β)dβ

=−Tr
{
R−1

β (mβm
H
β +Ψβ)

}−logdet(Rβ)−(Q+1)Llogπ;
(50)
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∫
σ2

Q2(σ
2)logp(σ2)dσ2

=

NR−1∑
j=0

N−1∑
k=0

[
ak,j logbk,j + (−ak,j − 1)Eσ2

j (k)

{
logσ2

j (k)
}

− Eσ2
j (k)

{ 1

σ2
j (k)

}
bk,j − logΓ(ak,j)

]

=

NR−1∑
j=0

N−1∑
k=0

[
ak,j logbk,j +(−ak,j − 1)

(
logb̃k,j −ψ(ãk,j)

)

− ãk,j

b̃k,j
bk,j − logΓ(ak,j)

]
; (51)

∫
φ

Q3(φ)logp(φ)dφ

= −1

2
Tr
{
R−1

φ Eφ{φφT }
}− NTN

2
log2π − 1

2
log det(Rφ)

= −1

2

(
Tr
{
R−1

φ Ψφ

}
+mT

φR
−1
φ mφ

)
− NTN

2
log2π − 1

2
log det(Rφ); (52)

∫
xd

Q4(xd)logp(xd)dxd

=

NT−1∑
i=0

Nd−1∑
k=0

log
{ ∑
x̄i
d(k)∈c

δ
(
x̃id(k)−x̄id(k)

)}−NTNdlogm.

(53)

For the last term of (25), we first compute the likelihood
function. With the observation model defined in (13) and the
Gaussian property of the NBI plus AWGN term, the log-
likelihood function of y can be expressed as

logp(y|β,σ2,φ,xd)

= −
NR−1∑
j=0

N−1∑
k=0

logσ2
j (k)−NRN logπ − yHR−1

w y

+ 2�{yHR−1
w Ξ[φ,x]β

}
− Tr

{
ΞH [φ,x]R−1

w Ξ[φ,x]ββH
}
, (54)

where Rw = Bldiag{R0
w, ...,R

NR−1
w } with Rj

w =
diag{σ2

j (0), ..., σ
2
j (N − 1)}. Using (54), we have Eq.

(55) at the top of the next page. Define Λσ2 =
Bldiag{Λ0

σ2 , ...,ΛNR−1
σ2 } with Λj

σ2 = diag{ ã0,j
b̃0,j

, ...,
ãN−1,j

b̃N−1,j
}

and using the equivalent expressions between (13) and (15),
we obtain Eq. (56) at the top of the next page, where
ρρρφ = (1NTN + jmφ). Since the covariance matrix Ψφ is
Hermitian, based on eigen-decomposition, we have Ψφ =∑NTN−1

z=0 ηzμzμ
T
z with ηz being the zth eigenvalue of Ψφ,

and μz being the zth eigenvector, associated with ηz . By
using the equivalent expressions between (13) and (15), the
last term of (56) can be derived as Eq. (57) in the middle of
the next page. Substituting (57) into (56), the last term in the
KL divergence (25) can be obtained. Finally, substituting (46)-
(53) and (56) into (25) and dropping those irrelevant terms
leads to (30).

APPENDIX C
DERIVATION OF (33) AND (34)

Gathering those terms related to ãk,j in (30) and computing
the first derivative with respect to ãk,j , we obtain Eq. (58) in
the middle of the next page, where ψ

′
(ãk,j) =

∂ψ(ãk,j)
∂ãk,j

with

ψ(ãk,j) =
∂logΓ(ãk,j)
∂ãk,j

. Gathering those terms related to b̃k,j in

(30) and computing the first derivative with respect to b̃k,j , we
obtain Eq. (59) at the bottom of the next page. Setting both
(58) and (59) to zero and solving them simultaneously, after
some straightforward computations we obtain (33) and (34).
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