2,339 research outputs found

    Solution of Fractional Order Differential Equation Problems by Triangular Functions for Biomedical Applications

    Get PDF
    Abstract—Fractional Order Differential equations are used for modelling of a wide variety of biological systems but the solution process of such equations are quite complex. In this paper Orthogonal Triangular functions and their operational matrices have been used for finding an approximate solution of Fractional Order Differential Equations. This technique has been found to be more powerful in solving Fractional Order Differential Equations owing to the fact that the differential equations are reduced to systems of algebraic equations which are easy to solve numerically and the percentage error is lower compared to other methods of solutions (like: Laplace Transform Method). Also due to the recursive nature of this method, it can also be concluded that this method is less complex and more efficient in solving varieties of the Fractional Order Differential Equations

    Differential quadrature method for space-fractional diffusion equations on 2D irregular domains

    Full text link
    In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by L\'{e}vy processes, which are sometimes called super-diffusion equations. In this article, we develop the differential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.Comment: 25 pages, 25 figures, 7 table

    Computing the matrix Mittag-Leffler function with applications to fractional calculus

    Get PDF
    The computation of the Mittag-Leffler (ML) function with matrix arguments, and some applications in fractional calculus, are discussed. In general the evaluation of a scalar function in matrix arguments may require the computation of derivatives of possible high order depending on the matrix spectrum. Regarding the ML function, the numerical computation of its derivatives of arbitrary order is a completely unexplored topic; in this paper we address this issue and three different methods are tailored and investigated. The methods are combined together with an original derivatives balancing technique in order to devise an algorithm capable of providing high accuracy. The conditioning of the evaluation of matrix ML functions is also studied. The numerical experiments presented in the paper show that the proposed algorithm provides high accuracy, very often close to the machine precision

    Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain

    Get PDF
    In this article, we first introduce a singular fractional Sturm-Liouville problem (SFSLP) on unbounded domain. The associated fractional differential operator is both Weyl and Caputo type. The properties of spectral data for fractional operator on unbounded domain have been investigated. Moreover, it has been shown that the eigenvalues of the singular problem are real-valued and the corresponding eigenfunctions are orthogonal. The analytical eigensolutions of SFSLP are obtained and defined as generalized Laguerre fractional-polynomials. The optimal approximation of such generalized Laguerre fractional-polynomials in suitably weighted Sobolev spaces involving fractional derivatives has been derived. We construct an efficient generalized Laguerre fractional-polynomials-Petrov–Galerkin methods for a class of fractional initial value problems and fractional boundary value problems. As a numerical example, we examine space fractional advection–diffusion equation. Our theoretical results are confirmed by associated numerical results
    • …
    corecore