2 research outputs found

    Solution of the Second Order of the Linear Hyperbolic Equation Using Cubic B-Spline Collocation Numerical Method

    Get PDF
    Wave equation is one of the second order of the linear hyperbolic equation. Telegraph equation as a special case of wave equation has interesting point to investigate in the numerical point of view. In this paper, we consider the numerical methods for one dimensional telegraph equation by using cubic B-spline collocation method. Collocation method is one method to solve the partial differential equation model problem. Cubic spline interpolation is an interpolation to a third order polynomial. This polynomial interpolate four point. B-Spline is one of spline function which related to smoothness of the partition. For every spline function with given order can be written as linear combination of those B-spline. As we known that the result of the numerical technique has difference with the exact result which we called as, so that we have an error. The numerical results are compared with the interpolating scaling function method which investigated by Lakestani and Saray in 2010. This numerical methods compared to exact solution by using RMSE (root mean square error), L2 norm error and L_∞ norm error . The error of the solution showed that with the certain function, the cubic collocation of numerical method can be used as an alternative methods to find the solution of the linear hyperbolic of the PDE. The advantages of this study, we can choose the best model of the numerical method for solving the hyperbolic type of PDE. This cubic B-spline collocation method is more efficiently if the error is relatively small and closes to zero. This accuration verified by test of example 1 and example 2 which applied to the model problem

    A New Unconditionally Stable Method for Telegraph Equation Based on Associated Hermite Orthogonal Functions

    Get PDF
    The present paper proposes a new unconditionally stable method to solve telegraph equation by using associated Hermite (AH) orthogonal functions. Unlike other numerical approaches, the time variables in the given equation can be handled analytically by AH basis functions. By using the Galerkin’s method, one can eliminate the time variables from calculations, which results in a series of implicit equations. And the coefficients of results for all orders can then be obtained by the expanded equations and the numerical results can be reconstructed during the computing process. The precision and stability of the proposed method are proved by some examples, which show the numerical solution acquired is acceptable when compared with some existing methods
    corecore