280 research outputs found

    Solitary Wave Solutions of the Generalized Rosenau-KdV-RLW Equation

    Get PDF
    This paper investigates the solitary wave solutions of the generalized Rosenau–Korteweg-de Vries-regularized-long wave equation. This model is obtained by coupling the Rosenau–Korteweg-de Vries and Rosenau-regularized-long wave equations. The solution of the equation is approximated by a local meshless technique called radial basis function (RBF) and the finite-difference (FD) method. The association of the two techniques leads to a meshless algorithm that does not requires the linearization of the nonlinear terms. First, the partial differential equation is transformed into a system of ordinary differential equations (ODEs) using radial kernels. Then, the ODE system is solved by means of an ODE solver of higher-order. It is shown that the proposed method is stable. In order to illustrate the validity and the efficiency of the technique, five problems are tested and the results compared with those provided by other schemes.info:eu-repo/semantics/publishedVersio

    Numerical approximation to a solution of the modified regularized long wave equation using quintic B splines

    Get PDF
    In this work, a numerical solution of the modified regularized long wave (MRLW) equation is obtained by the method based on collocation of quintic B-splines over the finite elements. A linear stability analysis shows that the numerical scheme based on Von Neumann approximation theory is unconditionally stable. Test problems including the solitary wave motion, the interaction of two and three solitary waves and the Maxwellian initial condition are solved to validate the proposed method by calculating error norms L2 and L∞ that are found to be marginally accurate and efficient. The three invariants of the motion have been calculated to determine the conservation properties of the scheme. The obtained results are compared with other earlier result

    Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method

    Get PDF
    In this paper, a numerical solution of the modified regularized long wave (MRLW) equation has been obtained by a numerical technique based on a lumped Galerkin method using cubic B-spline finite elements. Solitary wave motion, interaction of two and three solitary waves have been studied to validate the proposed method. The three invariants ( 1 2 3 I ,I ,I ) of the motion have been calculated to determine the conservation properties of the scheme. Error norms L2 and L∞ have been used to measure the differences between the exact and numerical solutions. Also, a linear stability analysis of the scheme is proposed

    Petrov Galerkin finite element method for solving the MRLW equation

    Get PDF
    In this article, a Petrov-Galerkin method, in which the element shape functions are cubic and weight functions are quadratic B-splines, is introduced to solve the modified regularized long wave (MRLW) equation. The solitary wave motion, interaction of two and three solitary waves, and development of the Maxwellian initial condition into solitary waves are studied using the proposed method. Accuracy and efficiency of the method are demonstrated by computing the numerical conserved laws and L2, L∞ error norms. The computed results show that the present scheme is a successful numerical technique for solving the MRLW equation. A linear stability analysis based on the Fourier method is also investigate
    corecore