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Abstract

In this article, a Petrov-Galerkin method, in which the element shape functions are cubic and weight functions are
quadratic B-splines, is introduced to solve the modified regularized long wave (MRLW) equation. The solitary wave
motion, interaction of two and three solitary waves, and development of the Maxwellian initial condition into solitary
waves are studied using the proposed method. Accuracy and efficiency of the method are demonstrated by
computing the numerical conserved laws and L2, L∞ error norms. The computed results show that the present
scheme is a successful numerical technique for solving the MRLW equation. A linear stability analysis based on the
Fourier method is also investigated.
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Introduction
This study is concerned with the following one-
dimensional modified regularized long wave (MRLW)
equation:

Ut + Ux + 6U2Ux − μUxxt = 0, (1)

where t is time, x is the space coordinate, μ is a pos-
itive parameter, and U(x, t) is the wave amplitude with
the physical boundary conditions U → 0 as x → ± ∞.
The equation was first introduced to describe the devel-
opment of an undular bore by Peregrine [1] and later by
Benjamin et al. [2]. This equation is very important in
physicsmedia since it describes the phenomena with weak
nonlinearity and dispersion waves, including nonlinear
transverse waves in shallow water, ion-acoustic and mag-
neto hydrodynamic waves in plasma, and phonon packets
in nonlinear crystals [2]. The MRLW equation which we
discuss here is based upon the regularized long wave
equation [[3]-[21]] and is related with both the modified
equal width wave [[22]-[25]] and modified Korteweg-de
Vries equation [26] . This equation is a special case of the
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generalized long wave (GRLW) equation which has the
form:

Ut + Ux + δUpUx − μUxxt = 0, (2)

where δ and μ are positive constants and p is a positive
integer. Few authors have studied the GRLW equation;
a quasilinearization method based on finite differences
was used by Ramos [27] for solving the GRLW equation.
Zhang [28] used a finite difference method to solve
the GRLW equation for a Cauchy problem. Kaya and
El-Sayed [29] also studied the GRLW equation with the
Adomian decomposition method. Roshan [30] solved
the GRLW equation numerically by the Petrov-Galerkin
method using a linear hat function as the trial function
and a quintic B-spline function as the test function. The
MRLW equation with a limited set of boundary and initial
conditions has analytical solutions. Therefore, numerical
solutions of the equation have been the subject of some
papers. Gardner et al. [31] introduced a collocation solu-
tion to the MRLW equation using quintic B-spline finite
elements. Khalifa et al. [32,33] applied the finite differ-
ence and cubic B-spline collocation finite element method
to obtain the numerical solutions of the MRLW equation.
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Solutions based on collocation method with quadratic
B-spline finite elements and the central finite difference
method for time are investigated by Raslan [34]. Raslan
and Hassan [35] solved the MRLW equation by a col-
location finite element method using quadratic, cubic,
quartic, and quintic B- splines to obtain the numeri-
cal solutions of the single solitary wave. Haq et al. [36]
have developed a numerical scheme based on quartic B-
spline collocation method for the numerical solution of
MRLW equation. Ali [37] has formulated a classical radial
basis function collocation method for solving the MRLW
equation.
In this paper, we have applied a lumped Petrov-

Galerkin method in which the element shape functions
are cubic, and the weight functions are quadratic B-
splines. The motion of a single solitary wave, interac-
tion of two and three solitary waves, and Maxwellian
initial condition are studied to show the performance
and accuracy of the proposed method. A linear stability
analysis of the scheme shows that it is unconditionally
stable.

Cubic B-spline Petrov-Galerkinmethod
To apply the numerical method, the solution domain of
the problem is restricted over an intervala ≤ x ≤ b. The
interval is partitioned into uniformly sized finite elements
of equal length h by the nodes xm such that a = x0 <

x1 · · · < xN = b and h = xm+1 − xm, m = 1, 2, ...,N .
The MRLW equation (1) is considered with the boundary
conditions

U(a, t) = 0, U(b, t) = 0,

Ux(a, t) = 0, Ux(b, t) = 0, t > 0,
(3)

and the initial condition

U(x, 0) = f (x), a ≤ x ≤ b

where f (x) is a prescribed function. Physical boundary
conditions require U and Ux → 0 that U → 0 for
x → ±∞. The cubic B-splines φm(x), m = −1(1)N + 1
are defined at the knots xm by [17].

The set of functions {φ−1,φ0, ...φ1} forms a basis for
functions defined over the interval a ≤ x ≤ b. So, the
numerical solution UN (x, t) to the exact solution UN (x, t)
is given by:

UN (x, t) =
N+1∑
j=−1

δj(t)φj(x) (5)

where δj are the time dependent quantities to be deter-
mined from the boundary and weighted residual condi-
tions. Each cubic B-spline covers four elements so that
each element [ xm, xm+1] is covered by four splines. Apply-
ing a local coordinate system for the typical finite element
[ xm, xm+1] defined by:

hη = x − xm 0 ≤ η ≤ 1, (6)

so the cubic B-spline shape functions over the element
[ 0, 1] can be defined as:

φm−1 = (1 − η)3,
φm = 1 + 3(1 − η) + 3(1 − η)2 − 3(1 − η)3,
φm+1 = 1 + 3η + 3η2 − 3η3,
φm+2 = η3.

(7)

All splines apart from φm−1(x),φm(x),φm+1(x) and
φm+2(x) are zero over the element [ xm, xm+1]. Over
the typical element [ xm, xm+1], the numerical solution
UN (x, t) is given by:

UN (x, t) =
m+2∑

j=m−1
φj(x)δj(t) (8)

where δm−1, δm, δm+1, δm+2 act as element parameters and
B-splines φm−1,φm,φm+1, φm+2 as element shape func-
tions. Using trial function (5) and cubic splines (4), the
nodal values of U ,U ′ and U ′′ at the knot xm are given in
terms of the element parameters δm by:

Um = U(xm) = δm−1 + 4δm + δm+1,

U ′
m = U ′(xm) = 3

h
(−δm−1 + δm+1),

U ′′
m = U ′′(xm) = 6

h2
(δm−1 − 2δm + δm+1).

(9)

where the symbols ′ and ′′ denote first and second differ-
entiation with respect to x, respectively. The splines φm(x)
and their two principle derivatives vanish outside the
interval [ xm−2, xm+2]. The weight function �m is taken a
quadratic B-spline. Quadratic B-spline�m at the knots xm
is defined over the interval [ a, b] by:

φm(x) = 1
h3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x − xm−2)3, x ∈[ xm−2, xm−1] ,
h3 + 3h2(x − xm−1) + 3h(x − xm−1)2 − 3(x − xm−1)3 x ∈[ xm−1, xm] ,
h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈[ xm, xm+1] ,
(xm+2 − x)3, x ∈[ xm+1, xm+2] ,
0 otherwise.

(4)
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�m(x) = 1
h2

⎧⎪⎪⎨
⎪⎪⎩

(xm+2 − x)2 − 3(xm+1 − x)2 + 3(xm − x)2, [ xm−1, xm]
(xm+2 − x)2 − 3(xm+1 − x)2 [ xm, xm+1]
(xm+2 − x)2 [ xm+1, xm+2]
0 otherwise.

(10)

Using the local coordinate transformation for the finite
element [ xm, xm+1] by hη = x−xm , 0 ≤ η ≤ 1 quadratic
B-spline �m can be defined as:

�m−1 = (1 − η)2,

�m = 1 + 2η − 2η2,

�m+1 = η2.

(11)

Applying the Petrov-Galerkin approach to Equation 1,
we obtain the weak form of Equation 1:

∫ b

a
�(Ut + Ux + 6U2Ux − μUxxtdx) = 0. (12)

For a single element [ xm, xm+1] , using transformation
(6) into Equation 12 we obtain:

∫ 1

0
�

(
Ut +

(
1 + 6U2

h

)
Uη − μ

h2
Uηηt

)
dη = 0.

(13)

Integrating Equation 13 by parts and using Equation 1
lead to:

∫ 1

0
[�(Ut + λUη) + β�ηUηt) ] dη = β�Uηt|10 (14)

where λ = 1+6U2

h and β = μ

h2 . Taking the weight func-
tion �i with quadratic B-spline shape functions given by
Equation 11 and substituting approximation (8) into inte-
gral Equation 14, we obtain the element contributions in
the form:

m+1∑
j=m−1

[(∫ 1

0
�iφj + β� ′

iφ
′
j

)
dη − β�iφ

′
j |10

]
δ̇ej

+
m+1∑

j=m−1

(
λ

∫ 1

0
�iφ

′
jdη

)
δej

(15)

which can be written in matrix form as follows:

[Ae + β(Be − Ce)] δ̇e + λDeδe (16)

where δe = (δm−1, δm, δm+1, δm+2)T are the element
parameters, and the dot denotes differentiation with
respect to t. The element matrices Ae,Be,Ce, and De are
rectangular 3 × 4 given by the following integrals:

Ae
ij =

∫ 1

0
�iφjdη = 1

60

⎡
⎣ 10 71 38 1
19 221 221 19
1 38 71 10

⎤
⎦

Be
ij =

∫ 1

0
� ′

iφ
′
jdη = 1

2

⎡
⎣ 3 5 −7 −1

−2 2 2 −2
−1 −7 5 3

⎤
⎦

Ce
ij = �iφ

′
j |10 = 3

1

⎡
⎣ 1 0 −1 0
1 −1 −1 1
0 −1 0 1

⎤
⎦

De
ij =

∫ 1

0
�iφ

′
jdη = 1

10

⎡
⎣ −6 −7 12 1

−13 −41 41 13
−1 −12 7 6

⎤
⎦

where i takes only the values 1, 2, 3, and the j takes only
the valuesm − 1,m,m + 1,m + 2 for the typical element
[ xm, xm+1]. A lumped value for λ is found from 1

4 (Um +
Um+1)2 as:

λ = 6
4h

(δm−1 + 5δm + 5δm+1 + δm+2)
2.

Assembling all contributions from all elements leads to
the following matrix equation:

[Ae + β(Be − Ce)] δ̇e + λDeδe = 0 (17)

where δ = (δ−1, δ0, ..., δN , δN+1)T are the global element
parameters. The matrices A, B, and λD are rectangular,
and rowm of each has the following form:

A = 1
60

(1, 57, 302, 302, 57, 1, 0),

B = 1
2
(−1,−9, 10, 10,−9,−1, 0),

λD = 1
10

(−λ1,−12λ1 − 13λ2, 7λ1 − 41λ2 − 6λ3, 6λ1

+ 41λ2 − 7λ3, 13λ2 + 12λ3, λ3, 0)
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where

λ1 = 6
4h

(δm−2 + 5δm−1 + 5δm + δm+1)
2,

λ2 = 6
4h

(δm−1 + 5δm + 5δm+1 + δm+2)
2,

λ3 = 6
4h

(δm + 5δm+1 + 5δm+2 + δm+3)
2.

Substituting the Crank-Nicholson approach δ = 1
2 (δ

n +
δn+1) and the forward finite difference δ̇ = δn+1−δn

�t in
Equation 17, we obtain the following matrix system:

[
A+β(B − C)+ λ�t

2
D

]
δn+1=

[
A+β(B−C)− λ�t

2
D

]
δn

(18)

where �t is the time step. Applying the boundary condi-
tions (3) to the system (18), we make the matrix equation
square. The resulting system can be efficiently solved with
a variant of the Thomas algorithm. Two or three inner
iterations are applied to δn∗ = δn + 1

2 (δ
n − δn−1) at each

time in order to improve the accuracy.
To evaluate the vector parameters δn, the initial vector

δ0 must be determined from the initial and boundary con-
ditions. So the approximation (8) can be rewritten for the
initial condition:

UN (x, 0) =
N+1∑
m=−1

φm(x)δ0m,

where the parameters δ0m will be determined. Using rela-
tions at the knots:

UN (xm, 0) = U(xm, 0),
U ′
N (x0, 0) = U ′(xN , 0) = 0, m = 0, 1, · · · ,N ,

together with the derivative condition, the initial vector δ0

can be determined from the following matrix equation:
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 3

1 4 1
. . .

1 4 1

−3 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δ0−1
δ00
...

δ0N

δ0N+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

U(x0)
...

U(xN )

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

which can be solved using a variant of the Thomas
algorithm.

Stability analysis
A typical member of the matrix system (18) can be written
in terms of the nodal parameters δnm as:

γ1δ
n+1
m−2+γ2δ

n+1
m−1+γ3δ

n+1
m +γ4δ

n+1
m+1 + γ5δ

n+1
m+2 + γ6δ

n+1
m+3

= γ6δ
n
m−2+γ5δ

n+
m−1+γ4δ

n
m+γ3δ

n
m+1 + γ2δ

n
m+2 + γ1δ

n
m+3
(19)

where

γ1 = 1
60

− β

2
− λ�t

20
,

γ2 = 57
60

− 9β
2

− 25λ�t
20

,

γ3 = 302
60

+ 10β
2

− 40λ�t
20

,

γ4 = 302
60

+ 10β
2

+ 40λ�t
20

,

γ5 = 57
60

− 9β
2

+ 25λ�t
20

,

γ6 = 1
60

− β

2
+ λ�t

20
.

Table 1 Invariants and error norms for single solitary wave with c = 1,h = 0.2, k = 0.025, 0 ≤ x ≤ 100

t I1 I2 I3 L2 × 103 L∞ × 103

0 4.4428660 3.2998132 1.4142140 0.00000000 0.00000000

1 4.4429039 3.2998799 1.4142751 1.27857482 0.97128634

2 4.4429407 3.2999386 1.4143307 1.94873185 1.19047742

3 4.4429738 3.2999875 1.4143789 2.23310008 1.22147152

4 4.4430057 3.3000339 1.4144250 2.36289726 1.22257461

5 4.4430371 3.3000792 1.4144702 2.42413895 1.21265967

6 4.4430681 3.3001242 1.4145150 2.44984423 1.19897971

7 4.4430989 3.3001688 1.4145596 2.45520554 1.17805328

8 4.4431289 3.3002133 1.4146041 2.44829913 1.15091479

9 4.4431564 3.3002578 1.4146485 2.43398306 1.11806098

10 4.4431758 3.3003023 1.4146927 2.41552569 1.07974857
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Table 2 Errors and invariants for single solitary wave with c = 1, h = 0.2, k = 0.025, 0 ≤ x ≤ 100, at t = 10

Method I1 I2 I3 L2 × 103 L∞ × 103

Analytical 4.4428829 3.2998316 1.4142135 0 0

Present 4.4431758 3.3003023 1.4146927 2.41552 1.07974

[30] 4.44288 3.29981 1.41416 3.00533 1.68749

Cubic B-splines coll-CN [31] 4.442 3.299 1.413 16.39 9.24

Cubic B-splines coll+PA-CN [31] 4.440 3.296 1.411 20.3 11.2

Cubic B-splines coll [32] 4.44288 3.29983 1.41420 9.30196 5.43718

MQ [37] 4.4428829 3.29978 1.414163 3.914 2.019

IMQ [37] 4.4428611 3.29978 1.414163 3.914 2.019

IQ [37] 4.4428794 3.29978 1.414163 3.914 2.019

GA [37] 4.4428829 3.29978 1.414163 3.914 2.019

TPS [37] 4.4428821 3.29972 1.414104 4.428 2.306

The stability analysis is based on the Fourier method in
which the growth factor of the error in a typical mode of
amplitude ξn,

δnj = ξneijkh (20)

where k is the mode number and h is the element size, is
determined from a linearization of the numerical scheme.
To apply the stability analysis, the MRLW equation can
be linearized by assuming that the quantity U in the
non-linear termU2Ux is locally constant. Substituting the
Fourier mode (20) into (19) gives the growth factor g of
the form:

g = a − ib
a + ib

, (21)

where

a = (302 + 300β) cos
(

θ

2

)
h + (57 − 270β) cos

(
3θ
2

)
h

+ (1 − 30β) cos
(
5θ
2

)
,

b = 120λ�t sin
(

θ

2

)
h + 75λ�t sin

(
3θ
2

)
h

+ 3λ�t sin(
5θ
2

)h.

(22)

Taking the modulus of Equation 21, we have |g| = 1.
Therefore, the scheme is unconditionally stable.

Figure 1 Single solitary wave with c = 1, h = 0.2,� t = 0.025, 0 ≤ x ≤ 100 t = 0, 2, 4, 6, 8, and 10.
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Table 3 Comparison of invariants for the interaction of
two solitary waves with results from [38] with c1 = 0.03,
c1 = 0.01,−40 ≤ x ≤ 180

Present method [38]

t I1 I2 I3 I1 I2 I3

0 6.34543 0.592826 0.0054854 6.34540 0.592825 0.0054853

0.2 6.34541 0.592826 0.0054854 6.34532 0.592789 0.0054841

0.4 6.34541 0.592826 0.0054854 6.34508 0.592683 0.0054806

0.6 6.34541 0.592826 0.0054854 6.34466 0.592511 0.0054751

0.8 6.34542 0.592826 0.0054854 6.34408 0.592280 0.0054678

1.0 6.34542 0.592826 0.0054854 6.34333 0.591998 0.0054591

1.2 6.34542 0.592826 0.0054853 6.34241 0.591678 0.0054492

1.4 6.34542 0.592827 0.0054851 6.34132 0.591334 0.0054387

1.6 6.34541 0.592828 0.0054841 6.34007 0.590985 0.0054280

18 6.34540 0.592830 0.0054814 6.33864 0.590648 0.0054175

2.0 6.34540 0.592832 0.0054796 6.33705 0.590348 0.0054075

Numerical examples and results
In this section, numerical solutions of the MRLW
equation are obtained for four standard problems: the
motion of single solitary wave, interaction of two and
three solitary waves, and development of the Maxwellian
initial condition into solitary waves. L2 and L∞ error
norms are used to show how good the numerical results
in comparison with the exact results defined by:

L2 = ∥∥Uexact − UN
∥∥
2 �

√√√√h
N∑
J=0

∣∣∣Uexact
j − (UN )j

∣∣∣2,
(23)

and the L∞ error norm

L∞ = ∥∥Uexact − UN
∥∥∞ � max

j

∣∣∣Uexact
j − (UN )j

∣∣∣ .
(24)

For the MRLW equation, we evaluate the following
invariants to validate the conservation properties: [31]

I1 =
∫ b

a
Udx � h

N∑
J=1

Un
j ,

I2 =
∫ b

a

[
U2+μ(Ux)

2] dx � h
N∑
J=1

[
(Un

j )2+μ (Ux)
n
j

]
,

I3 =
∫ b

a
(U4 − μU2

x)dx � h
N∑
J=1

[
(Un

j )4−μ(Ux)
n
j

]
,

which correspond to conversation of mass, momentum,
and energy, respectively.

Themotion of single solitary wave
Firstly, we consider Equation 1 with the boundary condi-
tions U → 0 as x → ±∞ and the initial condition:

U(x, 0) = √
c sec h

[
p (x − x0)

]
.

An analytical solution of this problem is:

U(x, t) = √
c sec h

[
p (x − (c + 1)t − x0)

]

which represents the motion of a single solitary wave with
amplitude

√
c, where p =

√
c

μ(c+1) , x0, and c are arbitrary

Figure 2 Interaction of two solitary waves at t = 2.
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Table 4 Comparison of invariants for the interaction of
three solitary waves with results from [38] with h=0.2,
k=0.025 in the region -40≤ x≤ 180

Present method [38]

t I1 I2 I3 I1 I2 I3

0 9.51777 0.9041368 0.0078632 9.51769 0.904129 0.0078631

0.1 9.51766 0.9041370 0.0078630 9.51770 0.904193 0.0078651

0.2 9.51766 0.9041370 0.0078631 9.51771 0.904383 0.0078706

0.3 9.51767 0.9041369 0.0078631 9.51772 0.904700 0.0078795

0.4 9.51767 0.9041369 0.0078631 9.51772 0.905144 0.0078919

0.5 9.51768 0.9041369 0.0078631 9.51773 0.905715 0.0078631

0.6 9.51768 0.9041369 0.0078632 9.51774 0.906413 0.0079076

0.7 9.51768 0.9041368 0.0078632 9.51775 0.907239 0.0079495

0.8 9.51768 0.9041369 0.0078632 9.51776 0.908192 0.0079755

0.9 9.51768 0.9041372 0.0078628 9.51776 0.909270 0.0080051

1.0 9.51768 0.9041384 0.0078616 9.51777 0.910476 0.0080380

constants. For this problem, the analytical values of the
invariants can be found as [31]:

I1 = π
√
c

p
, I2 = 2c

p
+ 2μpc

3
, I3 = 4c2

3p
− 2μpc

3
. (25)

We have taken the parameters c = 1, μ = 1, h = 0.2,
x0 = 40, and k = 0.025 over the interval [0, 100] to make
a comparison with those of earlier studies [30-32,37]. For
these parameters, the solitary wave has amplitude 1.0. The
simulations are done up to time t = 10 to find the error
norms L2 and L∞ and the numerical invariants I1, I2, and

I3 at various times. The obtained results are reported in
Table 1. As seen in Table 1, the error norms L2 and L∞
are found to be small enough, and the computed values
of invariants are in good agreement with their analytical
values I1 = 4.4428829, I2 = 3.2998316, I3 = 1.4142135.
Amplitude is 1.000000 at t = 0 which is located at x = 40,
while it is 0.999284 at t = 10 which is located at x = 60.0.
The absolute difference in amplitudes at times t = 0 and
t = 20 is 7.16 × 10−4, so that there is a little change
between amplitudes. The percentage of the relative error
of the conserved quantities I1, I2 and I3 are calculated with
respect to the conserved quantities at t = 0. Percentage of
relative changes of I1, I2, and I3 are found to be 6 × 10−3,
14 × 10−3, and 33 × 10−3, respectively. So, the invariants
remain almost constant during the computer run. Table
2 displays a comparison of the values of the invariants
and error norms obtained by the present method with
those obtained by other methods[30-32,37]. It is clearly
seen from Table 2 that the error norms obtained by the
present method are smaller than the other methods [30-
32,37]. Figure 1 illustrates the motion of solitary wave
with c = 1, h = 0.2, and k = 0.025 at different time
levels.

Interaction of two solitary waves
As a second problem, we consider the interaction of two
separated solitary waves having different amplitudes and
traveling in the same direction. For this problem, the
initial condition is given by:

U(x, 0) =
2∑

j=1
Aj sec h(pj[ x − xj] ), (26)

Figure 3 Interaction of three solitary waves with t = 1.
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Table 5 Invariants of MRLW equation using the
Maxwellian initial condition

μ t I1 I2 I3 I1 [38] I2 [38] I3 [38]

0.01 1.77247 1.27212 0.867430 1.77247 1.27213 0.86732

0.015 0.03 1.77246 1.27207 0.867341 1.77251 1.27255 0.86879

0.05 1.77243 1.27196 0.867156 1.77254 1.27624 0.88014

0.01 1.77247 1.25833 0.881212 1.77245 1.25833 0.881217

0.004 0.03 1.77246 1.25827 0.881091 1.77246 1.25833 0.881351

0.05 1.77246 1.25819 0.880750 1.77246 1.25852 0.881013

where Aj = √cj, pj =
√ cj

μ(cj+1) , j = 1, 2, cj and xj are
arbitrary constants. For the computational work, param-
eters μ = 1, c1 = 0.03, c2 = 0.01, x1 = 18, x2 = 58
are used over the range [−40, 180] to coincide with those
used by [38]. The experiment is run from t = 0 to t = 2,
and values of the invariant quantities I1, I2 and I3 are listed
in Table 3 . Table 3 shows a comparison of the values of
the invariants obtained by the present method with those
obtained in [38]. It is seen that the numerical values of the
invariants remain almost constant during the computer
run. Figure 2 shows the development of the interaction of
two solitary waves. At t = 0, the amplitude of larger waves
is 0.1769525 at the point x = 58.1 whereas the amplitude
of the smaller one is 0.1003772 at the point x = 97.9. How-
ever, at t = 2, the amplitude of larger waves is 0.1768495
at the point x = 60.1 whereas the amplitude of the smaller
one is 0.1003873 at the point x = 99.9. It is found that
the absolute difference in amplitude is 1.01× 10−5 for the
smaller wave and 1.03 × 10−4 for the larger wave for this
algorithm.

Interaction of three solitary waves
In this section, we study the behavior of the interaction of
three solitary waves having different amplitudes and trav-
eling in the same direction. So, we consider Equation 1
with the initial condition given by the linear sum of three
well-separated solitary waves of different amplitudes:

U(x, 0) =
3∑

j=1
Aj sec h(pj[ x − xj] ), (27)

where Aj = √cj, pj =
√ cj

μ(cj+1) , j = 1, 2, 3, cj and xj
are arbitrary constants. For the computational work, we
have chosen the parameters μ = 1, c1 = 0.03, c2 = 0.02,
c3 = 0.01, x1 = 8, x2 = 48, x3 = 88 over the inter-
val [−40, 180]. Simulations are done up to time t = 1.
Table 4 displays a comparison of the values of the invari-
ants obtained by the present method with those obtained
in Ref. [38]. It is seen from the table that the obtained val-
ues of the invariants remain almost during the computer
run. The absolute differences between the values of the
conservative constants obtained by the present method
at times t = 0 and t = 1 are �I1 = 4.8 × 10−2,
�I2 = 9.5 × 10−3,�I3 = 4.1 × 10−2. Figure 3 shows the
interaction of these solitary waves at different times.

TheMaxwellian initial condition
Finally, the development of the Maxwellian initial
condition

U(x, 0) = exp
(−(x − 40)2

)
, (28)

into a train of solitary waves is studied. It is known that
with the Maxwellian condition (28), the behavior of the
solution depends on the values of μ. So, we study each
of the following cases: μ = 0.015, and μ = 0.004. The

a b

Figure 4Maxwellian initial condition at t =0.05 with (a)μ=0.004 and (b)μ=0.015.
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obtained numerical values of the invariants are listed in
Table 5. The absolute differences between the values of the
invariants obtained for the μ = 0.015 are �I1 = 4× 10−5,
�I2 = 1.1 × 10−4,�I3 = 2.74 × 10−4 whereas they are
�I1 = 7 × 10−5,�I2 = 4.11 × 10−3,�I3 = 1.28 × 10−2

and for μ = 0.004; �I1 = 1 × 10−5, �I2 = 1.4 ×
10−4,�I3 = 4.62×10−4 whereas they are�I1 = 1×10−5,
�I2 = 1.9 × 10−4, �I3 = 3.906 × 10−3 in [38]. Figure 4
illustrates the development of the Maxwellian initial con-
dition into solitary waves for μ = 0.015 and μ = 0.004 at
time t = 0.05. As seen from the figure that for μ = 0.015
and μ = 0.004 only a single soliton is generated.

Conclusion
In this paper, a numerical method based on a Petrov-
Galerkin method using quadratic weight functions and
cubic B-spline finite elements has been presented to find
numerical solutions of MRLW equation. We tested our
scheme through single solitary wave in which the analytic
solution is known and extended it to study the interaction
of two and three solitary waves and the Maxwellian ini-
tial condition where the analytic solutions are unknown
during the interaction. The performance and accuracy of
the method were shown by calculating the error norms L2
and L∞. The obtained results show that a Petrov-Galerkin
method involving quadratic weight functions and cubic B-
spline finite elements can be used to produce reasonably
accurate numerical solutions of theMRLW equation. This
is a reliable method for getting the numerical solutions of
the physically important non-linear problems.
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