3 research outputs found

    Analisis Numerik Aliran Udara pada Rongga Hidung akibat Penyakit Sinusitis menggunakan Metode Volume Hingga

    Get PDF
    Penelitian ini bertujuan untuk menganalisis aliran udara pada rongga hidung akibat penyakit sinusitis. Penyakit sinusitis adalah peradangan yang terjadi pada dinding sinus disebabkan oleh gaya hidup yang tidak sehat. Dampak sinusitis secara umum adalah gangguan sistem pernafasan akibat adanya penumpukan cairan pada rongga hidung. Akibat dari penumpukan cairan tersebut menyebabkan pembengkakan pada lapisan konka hidung yang terhubung langsung dengan organ sinus. Munculnya pemodelan matematika sebagai sebagai ilmu baru merupakan salah satu alternatif pemecahan masalah ini. Pemodelan matematika bertujuan untuk memperoleh formula yang menggambarkan keadaan aliran udara di rongga hidung sesuai dengan kondisi sebenarnya. Pemodelan matematika yang digunakan adalah menggunakan metode volume hingga. Metode volume hingga digunakan untuk menganalisis benda yang tidak terstruktur seperti aliran udara. Pada penelitian ini menggunakan bantuan software Matlab dan Fluent. Matlab digunakan untuk menampilkan menghitung numerik dan grafik hasil yang terjadi, sedangkan Fluent digunakan untuk memvisualisasikan keadaan yang terjadi. Hasil dari penelitian ini adalah untuk mengetahui aliran udara yang terjadi pada rongga hidung akibat penyakit sinusitis, semakin besar ketebalan penumpukan lendir pada dinding sinus maka kecepatan aliran udara yang dihasilkan semakin cepat. Hasil perhitungan menggunakan metode volume hingga didapatkan tingkat kesalahan kurang dari 0,001

    Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics

    Get PDF
    Thermal water therapies have a role in treating various inflammatory disorders dating back to ancient Greece. Several studies have demonstrated beneficial effects of thermal water inhalations for upper respiratory disorders, such as improvement of mucociliary function and reduction of inflammatory cell infiltration. This experimental study describes the numerical investigation and clinical implications of thermal water droplet deposition in the nasal cavity of a single patient. To our knowledge, the numerical flow simulations described are the first investigations specifically designed for thermal water applications. To simulate nasal airflow, a patient-specific 3D computer model was created from a CT scan. The numerical approach is based on the Large Eddy Simulation (LES) technique and builds entirely upon open-source software. Deposition on mucosa was studied for two droplet sizes (5 and 10 µm diameter), corresponding to common thermal therapy applications (aerosol and vapour inhalation). The simulations consider steady inspiration at two different (low and moderate) breathing intensities. The results of this preliminary study show specific deposition patterns that favour droplet deposition in the middle meatus region to the inferior meatus, with particle size- and breathing intensity-related effects. These global data on particle deposition differ from findings related to the single-phase nasal airflow, which is more evenly distributed between the middle and inferior meatus. The potential clinical consequences of deposition data are discussed. The study furthermore provides evidence for the effectiveness of thermal aerosol and vapour inhalation therapies in reaching important areas of nasal mucosa with considerable clinical significance

    Numerical simulation of thermal water delivery in the human nasal cavity

    No full text
    This work describes an extensive numerical investigation of thermal water delivery for the treatment of inflammatory disorders in the human nasal cavity. The numerical simulation of the multiphase air-droplets flow is based upon the Large Eddy Simulation (LES) technique, with droplets of thermal water described via a Lagrangian approach. Droplet deposition is studied for different sizes of water droplets, corresponding to two different thermal treatments, i.e. aerosol and inhalation. Numerical simulations are conducted on a patient-specific anatomy, employing two different grid sizes, under steady inspiration at two breathing intensities. The results are compared with published in vivo and in vitro data. The effectiveness of the various thermal treatments is then assessed qualitatively and quantitatively, by a detailed analysis of the deposition patterns of the droplets. Discretization effects on the deposition dynamics are addressed. The level of detail of the present work, together with the accuracy afforded by the LES approach, leads to an improved understanding of how the mixture of air-water droplets is distributed within the nose and the paranasal sinuses
    corecore