674 research outputs found

    An hphp-Adaptive Newton-Galerkin Finite Element Procedure for Semilinear Boundary Value Problems

    Full text link
    In this paper we develop an hphp-adaptive procedure for the numerical solution of general, semilinear elliptic boundary value problems in 1d, with possible singular perturbations. Our approach combines both a prediction-type adaptive Newton method and an hphp-version adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully hphp-adaptive Newton-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples.Comment: arXiv admin note: text overlap with arXiv:1408.522

    Adaptive Pseudo-Transient-Continuation-Galerkin Methods for Semilinear Elliptic Partial Differential Equations

    Full text link
    In this paper we investigate the application of pseudo-transient-continuation (PTC) schemes for the numerical solution of semilinear elliptic partial differential equations, with possible singular perturbations. We will outline a residual reduction analysis within the framework of general Hilbert spaces, and, subsequently, employ the PTC-methodology in the context of finite element discretizations of semilinear boundary value problems. Our approach combines both a prediction-type PTC-method (for infinite dimensional problems) and an adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully adaptive PTC-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples.Comment: arXiv admin note: text overlap with arXiv:1408.522

    A Mixed Finite Element Method for Singularly Perturbed Fourth Oder Convection-Reaction-Diffusion Problems on Shishkin Mesh

    Full text link
    This paper introduces an approach to decoupling singularly perturbed boundary value problems for fourth-order ordinary differential equations that feature a small positive parameter ϵ\epsilon multiplying the highest derivative. We specifically examine Lidstone boundary conditions and demonstrate how to break down fourth-order differential equations into a system of second-order problems, with one lacking the parameter and the other featuring ϵ\epsilon multiplying the highest derivative. To solve this system, we propose a mixed finite element algorithm and incorporate the Shishkin mesh scheme to capture the solution near boundary layers. Our solver is both direct and of high accuracy, with computation time that scales linearly with the number of grid points. We present numerical results to validate the theoretical results and the accuracy of our method.Comment: 15 pages, 7 figure

    Numerical simulation of conservation laws with moving grid nodes: Application to tsunami wave modelling

    Get PDF
    In the present article we describe a few simple and efficient finite volume type schemes on moving grids in one spatial dimension combined with appropriate predictor-corrector method to achieve higher resolution. The underlying finite volume scheme is conservative and it is accurate up to the second order in space. The main novelty consists in the motion of the grid. This new dynamic aspect can be used to resolve better the areas with large solution gradients or any other special features. No interpolation procedure is employed, thus unnecessary solution smearing is avoided, and therefore, our method enjoys excellent conservation properties. The resulting grid is completely redistributed according the choice of the so-called monitor function. Several more or less universal choices of the monitor function are provided. Finally, the performance of the proposed algorithm is illustrated on several examples stemming from the simple linear advection to the simulation of complex shallow water waves. The exact well-balanced property is proven. We believe that the techniques described in our paper can be beneficially used to model tsunami wave propagation and run-up.Comment: 46 pages, 7 figures, 7 tables, 94 references. Accepted to Geosciences. Other author's papers can be downloaded at http://www.denys-dutykh.com
    corecore