6 research outputs found

    Memoria de Actividades 2002

    Get PDF
    N

    Solar Cell Temperature Dependent Efficiency and Very High Temperature Efficiency Limits

    Get PDF
    Clean renewable solar energy is and will continue to be a critically important source of electrical energy. Solar energy has the potential of meeting all of the world\u27s energy needs, and has seen substantial growth in recent years. Solar cells can convert sun light directly into electrical energy, and much progress has been made in making them less expensive and more efficient. Solar cells are often characterized and modeled at 25 °C, which is significantly lower than their peak operating temperature. In some thermal concentrating systems, solar cells operate above 300 °C. Since increasing the temperature drastically affects the terminal characteristics, it is important to quantify the losses caused by raising the temperature. Methodologies for including the temperature dependent material parameters in analytical and detailed numerical models have been examined. The analytical model has been developed to analyze Shockley-Queisser detailed balance limit, as well as the Auger, Radiative and SHR recombination limiting cases from 25 °C to 800 °C, at 1x, 500x and 2000x suns concentrations. The results of this analysis show that the efficiency of a direct bandgap material with an optimal bandgap could reach 19 % at 400 °C and 2000x suns, if the SHR recombination is reduced to an acceptable level. An analytical solar cell model was also used in a quasi-3D numerical model to simulate the temperature dependent resistivity losses. It was found that the resistive losses can double when the temperature of a solar cell increases from 25 °C to 100 °C. This will cause the conversion efficiency temperature coefficient to deteriorate by 10%. By using the temperature dependent material parameters for Si in a detailed numerical model, it was found that some of the adjustable parameters, such as the base thickness, increase the conversion efficiency temperature coefficient and the Voc, while other parameters would only increase the Voc. This conclusion can be used by solar cell manufactures to improve the solar cell parameters with the biggest possible gain in device performance

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Entwicklungsumgebung für den rechnerunterstützten Entwurf von Mikrokomponenten

    Get PDF
    Im Rahmen dieser Arbeit wurde eine Konstruktionsumgebung für den rechnerunterstützten Entwurf mikromechanischer Komponenten auf der Grundlage des naßchemischen, anisotropen Tiefenätzens von monokristallinem Silizium entwickelt. Die Inhalte spannen einen Bogen vom Stand der Konstruktionsmethodik mikrotechnischer Systeme über die Konzeption und Implementierung einer neuen Entwurfssystematik bis hin zu deren Einsatz im Entwurf einer komplexen mikromechanischen Funktionsstruktur. Das Konzept der Umgebung trägt der Tatsache Rechnung, daß bislang kaum standardisierte mikrotechnische Bauteile am Markt verfügbar sind und sich daher primär die Aufgabe einer Neukonstruktion und Charakterisierung seiner Funktionskomponenten stellt. Die Komplexität und Heterogenität mikrotechnischer Bauelemente verhinderte bislang die einheitliche und überschaubare Integration einer rechnerunterstützten Entwicklung mikrotechnischer Komponenten und Systeme. Dem Funktionskonzept des mikrotechnischen Bauteils steht zudem vielfach ein restriktiver Einfluß der Fertigungstechnologie auf den Gestaltungsraum gegenüber. Die derzeit praktizierte, analytische Entwurfsmethodik, ausgehend vom Layout einer zweidimensionalen Maske auf die dreidimensionale (3D) Mikrostruktur zu schließen, ist daher schwierig und fehlerträchtig. Im Fall des anisotropen Ätzens gilt dieses insbesondere für komplexe Strukturen, deren Form nicht direkt aus dem Si-Kristall abgeleitet werden kann. In der Entwurfspraxis führt dies häufig zu einer Einengung des theoretisch nutzbaren Gestaltungsraums. Vor diesem Hintergrund realisiert die Konstruktionsumgebung folgende Zielsetzungen: - anwendergerechte Abbildung und Steuerung des Entwurfsablaufs anisotrop geätzter Mikrostrukturen und Dekomposition der Entwurfsaufgabe im Rahmen eines einheitlichen Integrationskonzepts der vorhandenen Entwurfswerkzeuge sowie Unterstützung einer kooperativen Aufgabenbearbeitung der Entwurfsaufgabe auf der Basis eines Workflow-Managementsystems. Das workflowbasierte Organisationskonzept der Umgebung unterstützt die einheitliche Integration weiterer domänenspezifischer Konstruktionsabläufe. - Verbesserung der Gestaltungsmethodik mikromechanischer Funktionskomponenten und Erweiterung des technologischen Anwendungsspektrums der anisotropen Ätztechnik durch die teilweise Umkehrung des klassischen Entwurfs-Grundformalismus. Grundlage ist die Entwicklung eines neuenWerkzeugs zur automatisierten Synthese lithographischer Maskenlayouts aus der 3DKomponentenbeschreibung (Layoutsynthese) auf der Basis genetischer Algorithmen. Die Layoutsynthese nutzt hierzu einen in die Konstruktionsumgebung integrierten Ätzsimulator. Das Programmsystem ist langfristig auf die Angliederung weiterer, lithographieorientierter Prozeßsimulationen ausgelegt. - Implementierung eines durchgängigen Informationsflusses im Entwurfsprozeß, ausgehend von der funktionalen Konzeption bis hin zur strukturellen Verifikation des Bauteils. Die Realisierung erfolgt im wesentlichen durch die Entwicklung einer Transformation der Ätzsimulationsergebnisse in ein Geometriemodell der Finite-Elemente-Methode auf der Grundlage rekursiver Octree- Datenstrukturen. Der Ansatz schließt die Lücke in der von der Entwurfssystematik unterstützten Wechselbeziehung einer zugleich technologie- und strukturorientierten Gestaltentwicklung mikromechanischer Funktionselemente. Zur Demonstration der Effektivität der Konstruktionsumgebung wird anhand des Entwurfs eines aus Sicht der Prozeßtechnik komplexen mikromechanischen Funktionsstruktur der Nutzen der Entwurfsmethodik und seiner Implementierung im Rahmen der vorliegenden Konstruktionsumgebung nachgewiesen. Die simulatorischen und technologischen Ergebnisse des Beispiels verdeutlichen insbesondere die erweiterten Gestaltungsmöglichkeiten anisotrop geätzter Mikrostrukturen
    corecore