1,966 research outputs found

    Data Assimilation with Gaussian Mixture Models using the Dynamically Orthogonal Field Equations. Part II. Applications

    Get PDF
    The properties and capabilities of the GMM-DO filter are assessed and exemplified by applications to two dynamical systems: (1) the Double Well Diffusion and (2) Sudden Expansion flows; both of which admit far-from-Gaussian statistics. The former test case, or twin experiment, validates the use of the EM algorithm and Bayesian Information Criterion with Gaussian Mixture Models in a filtering context; the latter further exemplifies its ability to efficiently handle state vectors of non-trivial dimensionality and dynamics with jets and eddies. For each test case, qualitative and quantitative comparisons are made with contemporary filters. The sensitivity to input parameters is illustrated and discussed. Properties of the filter are examined and its estimates are described, including: the equation-based and adaptive prediction of the probability densities; the evolution of the mean field, stochastic subspace modes and stochastic coefficients; the fitting of Gaussian Mixture Models; and, the efficient and analytical Bayesian updates at assimilation times and the corresponding data impacts. The advantages of respecting nonlinear dynamics and preserving non-Gaussian statistics are brought to light. For realistic test cases admitting complex distributions and with sparse or noisy measurements, the GMM-DO filter is shown to fundamentally improve the filtering skill, outperforming simpler schemes invoking the Gaussian parametric distribution

    On the equivalence of dynamically orthogonal and bi-orthogonal methods: Theory and numerical simulations

    Get PDF
    The Karhunen–Lòeve (KL) decomposition provides a low-dimensional representation for random fields as it is optimal in the mean square sense. Although for many stochastic systems of practical interest, described by stochastic partial differential equations (SPDEs), solutions possess this low-dimensional character, they also have a strongly time-dependent form and to this end a fixed-in-time basis may not describe the solution in an efficient way. Motivated by this limitation of standard KL expansion, Sapsis and Lermusiaux (2009) [26] developed the dynamically orthogonal (DO) field equations which allow for the simultaneous evolution of both the spatial basis where uncertainty ‘lives’ but also the stochastic characteristics of uncertainty. Recently, Cheng et al. (2013) [28] introduced an alternative approach, the bi-orthogonal (BO) method, which performs the exact same tasks, i.e. it evolves the spatial basis and the stochastic characteristics of uncertainty. In the current work we examine the relation of the two approaches and we prove theoretically and illustrate numerically their equivalence, in the sense that one method is an exact reformulation of the other. We show this by deriving a linear and invertible transformation matrix described by a matrix differential equation that connects the BO and the DO solutions. We also examine a pathology of the BO equations that occurs when two eigenvalues of the solution cross, resulting in an instantaneous, infinite-speed, internal rotation of the computed spatial basis. We demonstrate that despite the instantaneous duration of the singularity this has important implications on the numerical performance of the BO approach. On the other hand, it is observed that the BO is more stable in nonlinear problems involving a relatively large number of modes. Several examples, linear and nonlinear, are presented to illustrate the DO and BO methods as well as their equivalence.National Science Foundation (U.S.) (NSF/DMS (DMS-1216437))Pacific Northwest National Laboratory (U.S.). Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) (DOE (DE-SC0009247))United States. Dept. of Defense (OSD/MURI (FA9550-09-1-0613)

    A minimization principle for the description of time-dependent modes associated with transient instabilities

    Full text link
    We introduce a minimization formulation for the determination of a finite-dimensional, time-dependent, orthonormal basis that captures directions of the phase space associated with transient instabilities. While these instabilities have finite lifetime they can play a crucial role by either altering the system dynamics through the activation of other instabilities, or by creating sudden nonlinear energy transfers that lead to extreme responses. However, their essentially transient character makes their description a particularly challenging task. We develop a minimization framework that focuses on the optimal approximation of the system dynamics in the neighborhood of the system state. This minimization formulation results in differential equations that evolve a time-dependent basis so that it optimally approximates the most unstable directions. We demonstrate the capability of the method for two families of problems: i) linear systems including the advection-diffusion operator in a strongly non-normal regime as well as the Orr-Sommerfeld/Squire operator, and ii) nonlinear problems including a low-dimensional system with transient instabilities and the vertical jet in crossflow. We demonstrate that the time-dependent subspace captures the strongly transient non-normal energy growth (in the short time regime), while for longer times the modes capture the expected asymptotic behavior

    Stochastic acoustic ray tracing with dynamically orthogonal equations

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2020.Developing accurate and computationally efficient models for ocean acoustics is inherently challenging due to several factors including the complex physical processes and the need to provide results on a large range of scales. Furthermore, the ocean itself is an inherently dynamic environment within the multiple scales. Even if we could measure the exact properties at a specific instant, the ocean will continue to change in the smallest temporal scales, ever increasing the uncertainty in the ocean prediction. In this work, we explore ocean acoustic prediction from the basics of the wave equation and its derivation. We then explain the deterministic implementations of the Parabolic Equation, Ray Theory, and Level Sets methods for ocean acoustic computation. We investigate methods for evolving stochastic fields using direct Monte Carlo, Empirical Orthogonal Functions, and adaptive Dynamically Orthogonal (DO) differential equations. As we evaluate the potential of Reduced-Order Models for stochastic ocean acoustics prediction, for the first time, we derive and implement the stochastic DO differential equations for Ray Tracing (DO-Ray), starting from the differential equations of Ray theory. With a stochastic DO-Ray implementation, we can start from non-Gaussian environmental uncertainties and compute the stochastic acoustic ray fields in a reduced order fashion, all while preserving the complex statistics of the ocean environment and the nonlinear relations with stochastic ray tracing. We outline a deterministic Ray-Tracing model, validate our implementation, and perform Monte Carlo stochastic computation as a basis for comparison. We then present the stochastic DO-Ray methodology with detailed derivations. We develop varied algorithms and discuss implementation challenges and solutions, using again direct Monte Carlo for comparison. We apply the stochastic DO-Ray methodology to three idealized cases of stochastic sound-speed profiles (SSPs): constant-gradients, uncertain deep-sound channel, and a varied sonic layer depth. Through this implementation with non-Gaussian examples, we observe the ability to represent the stochastic ray trace field in a reduced order fashion.Office of Naval Research Grants N00014-19-1-2664 (Task Force Ocean: DEEP-AI) and N00014-19-1-2693 (INBDA

    A future for intelligent autonomous ocean observing systems

    Get PDF
    Ocean scientists have dreamed of and recently started to realize an ocean observing revolution with autonomous observing platforms and sensors. Critical questions to be answered by such autonomous systems are where, when, and what to sample for optimal information, and how to optimally reach the sampling locations. Definitions, concepts, and progress towards answering these questions using quantitative predictions and fundamental principles are presented. Results in reachability and path planning, adaptive sampling, machine learning, and teaming machines with scientists are overviewed. The integrated use of differential equations and theory from varied disciplines is emphasized. The results provide an inference engine and knowledge base for expert autonomous observing systems. They are showcased using a set of recent at-sea campaigns and realistic simulations. Real-time experiments with identical autonomous underwater vehicles (AUVs) in the Buzzards Bay and Vineyard Sound region first show that our predicted time-optimal paths were faster than shortest distance paths. Deterministic and probabilistic reachability and path forecasts issued and validated for gliders and floats in the northern Arabian Sea are then presented. Novel Bayesian adaptive sampling for hypothesis testing and optimal learning are finally shown to forecast the observations most informative to estimate the accuracy of model formulations, the values of ecosystem parameters and dynamic fields, and the presence of Lagrangian Coherent Structures

    Bayesian Learning of Coupled Biogeochemical-Physical Models

    Full text link
    Predictive dynamical models for marine ecosystems are used for a variety of needs. Due to sparse measurements and limited understanding of the myriad of ocean processes, there is however significant uncertainty. There is model uncertainty in the parameter values, functional forms with diverse parameterizations, level of complexity needed, and thus in the state fields. We develop a Bayesian model learning methodology that allows interpolation in the space of candidate models and discovery of new models from noisy, sparse, and indirect observations, all while estimating state fields and parameter values, as well as the joint PDFs of all learned quantities. We address the challenges of high-dimensional and multidisciplinary dynamics governed by PDEs by using state augmentation and the computationally efficient GMM-DO filter. Our innovations include stochastic formulation and complexity parameters to unify candidate models into a single general model as well as stochastic expansion parameters within piecewise function approximations to generate dense candidate model spaces. These innovations allow handling many compatible and embedded candidate models, possibly none of which are accurate, and learning elusive unknown functional forms. Our new methodology is generalizable, interpretable, and extrapolates out of the space of models to discover new ones. We perform a series of twin experiments based on flows past a ridge coupled with three-to-five component ecosystem models, including flows with chaotic advection. The probabilities of known, uncertain, and unknown model formulations, and of state fields and parameters, are updated jointly using Bayes' law. Non-Gaussian statistics, ambiguity, and biases are captured. The parameter values and model formulations that best explain the data are identified. When observations are sufficiently informative, model complexity and functions are discovered.Comment: 45 pages; 18 figures; 2 table

    Probabilistic regional ocean predictions : stochastic fields and optimal planning

    Get PDF
    Thesis: Ph. D. in Mechanical Engineering and Computation, Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.Cataloged from PDF version of thesis. "Submitted to the Department of Mechanical Engineering and Center for Computational Engineering."Includes bibliographical references (pages 253-268).The coastal ocean is a prime example of multiscale nonlinear fluid dynamics. Ocean fields in such regions are complex, with multiple spatial and temporal scales and nonstationary heterogeneous statistics. Due to the limited measurements, there are multiple sources of uncertainties, including the initial conditions, boundary conditions, forcing, parameters, and even the model parameterizations and equations themselves. To reduce uncertainties and allow long-duration measurements, the energy consumption of ocean observing platforms need to be optimized. Predicting the distributions of reachable regions, time-optimal paths, and risk-optimal paths in uncertain, strong and dynamic flows is also essential for their optimal and safe operations. Motivated by the above needs, the objectives of this thesis are to develop and apply the theory, schemes, and computational systems for: (i) Dynamically Orthogonal ocean primitive-equations with a nonlinear free-surface, in order to quantify uncertainties and predict probabilities for four-dimensional (time and 3-d in space) coastal ocean states, respecting their nonlinear governing equations and non-Gaussian statistics; (ii) Stochastic Dynamically Orthogonal level-set optimization to rigorously incorporate realistic ocean flow forecasts and plan energy-optimal paths of autonomous agents in coastal regions; (iii) Probabilistic predictions of reachability, time-optimal paths and risk-optimal paths in uncertain, strong and dynamic flows. For the first objective, we further develop and implement our Dynamically Orthogonal (DO) numerical schemes for idealized and realistic ocean primitive equations with a nonlinear free-surface. The theoretical extensions necessary for the free-surface are completed. DO schemes are researched and DO terms, functions, and operations are implemented, focusing on: state variable choices; DO norms; DO condition for flows with a dynamic free-surface; diagnostic DO equations for pressure, barotropic velocities and density terms; non-polynomial nonlinearities; semi-implicit time-stepping schemes; and re-orthonormalization consistent with leap-frog time marching. We apply the new DO schemes, as well as their theoretical extensions and efficient serial implementation to forecast idealized-to-realistic stochastic coastal ocean dynamics. For the realistic simulations, probabilistic predictions for the Middle Atlantic Bight region, Northwest Atlantic, and northern Indian ocean are showcased. For the second objective, we integrate data-driven ocean modeling with our stochastic DO level-set optimization to compute and study energy-optimal paths, speeds, and headings for ocean vehicles in the Middle Atlantic Bight region. We compute the energy-optimal paths from among exact time-optimal paths. For ocean currents, we utilize a data-assimilative multiscale re-analysis, combining observations with implicit two-way nested multi-resolution primitive-equation simulations of the tidal-to-mesoscale dynamics in the region. We solve the reduced-order stochastic DO level-set partial differential equations (PDEs) to compute the joint probability of minimum arrival-time, vehicle-speed time-series, and total energy utilized. For each arrival time, we then select the vehicle-speed time-series that minimize the total energy utilization from the marginal probability of vehicle-speed and total energy. The corresponding energy-optimal path and headings be obtained through a particle backtracking equation. For the missions considered, we analyze the effects of the regional tidal currents, strong wind events, coastal jets, shelfbreak front, and other local circulations on the energy-optimal paths. For the third objective, we develop and apply stochastic level-set PDEs that govern the stochastic time-optimal reachability fronts and paths for vehicles in uncertain, strong, and dynamic flow fields. To solve these equations efficiently, we again employ their dynamically orthogonal reduced-order projections. We develop the theory and schemes for risk-optimal planning by combining decision theory with our stochastic time-optimal planning equations. The risk-optimal planning proceeds in three steps: (i) obtain predictions of the probability distribution of environmental flows, (ii) obtain predictions of the distribution of exact time-optimal paths for the forecast flow distribution, and (iii) compute and minimize the risk of following these uncertain time-optimal paths. We utilize the new equations to complete stochastic reachability, time-optimal and risk-optimal path planning in varied stochastic quasi-geostrophic flows. The effects of the flow uncertainty on the reachability fronts and time-optimal paths is explained. The risks of following each exact time-optimal path is evaluated and risk-optimal paths are computed for different risk tolerance measures. Key properties of the risk-optimal planning are finally discussed. Theoretically, the present methodologies are PDE-based and compute stochastic ocean fields, and optimal path predictions without heuristics. Computationally, they are several orders of magnitude faster than direct Monte Carlo. Such technologies have several commercial and societal applications. Specifically, the probabilistic ocean predictions can be input to a technical decision aide for a sustainable fisheries co-management program in India, which has the potential to provide environment friendly livelihoods to millions of marginal fishermen. The risk-optimal path planning equations can be employed in real-time for efficient ship routing to reduce greenhouse gas emissions and save operational costs.by Deepak Narayanan Subramani.Ph. D. in Mechanical Engineering and Computatio
    • …
    corecore