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Abstract

Developing accurate and computationally efficient models for ocean acoustics is inherently
challenging due to several factors including the complex physical processes and the need
to provide results on a large range of scales. Furthermore, the ocean itself is an inherently
dynamic environment within the multiple scales. Even if we could measure the exact prop-
erties at a specific instant, the ocean will continue to change in the smallest temporal scales,
ever increasing the uncertainty in the ocean prediction. In this work, we explore ocean
acoustic prediction from the basics of the wave equation and its derivation. We then explain
the deterministic implementations of the Parabolic Equation, Ray Theory, and Level Sets
methods for ocean acoustic computation. We investigate methods for evolving stochastic
fields using direct Monte Carlo, Empirical Orthogonal Functions, and adaptive Dynamically
Orthogonal (DO) differential equations. As we evaluate the potential of Reduced-Order
Models for stochastic ocean acoustics prediction, for the first time, we derive and imple-
ment the stochastic DO differential equations for Ray Tracing (DO-Ray), starting from the
differential equations of Ray theory. With a stochastic DO-Ray implementation, we can
start from non-Gaussian environmental uncertainties and compute the stochastic acoustic
ray fields in a reduced order fashion, all while preserving the complex statistics of the ocean
environment and the nonlinear relations with stochastic ray tracing. We outline a determin-
istic Ray-Tracing model, validate our implementation, and perform Monte Carlo stochastic
computation as a basis for comparison. We then present the stochastic DO-Ray method-
ology with detailed derivations. We develop varied algorithms and discuss implementation
challenges and solutions, using again direct Monte Carlo for comparison. We apply the
stochastic DO-Ray methodology to three idealized cases of stochastic sound-speed profiles
(SSPs): constant-gradients, uncertain deep-sound channel, and a varied sonic layer depth.
Through this implementation with non-Gaussian examples, we observe the ability to repre-
sent the stochastic ray trace field in a reduced order fashion.
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Title: Professor of Mechanical Engineering and Ocean Science and Engineering
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Chapter 1

Introduction

1.1 Motivation

In December of 2018, the Chief of Naval Operations, Admiral Jon Richardson, issued A

Design for Maintaining Maritime Superiority 2.0 to update “. . . the framework to guide

[United States Navy] behaviors and investments.” He places specific emphasis on enhanc-

ing the “cooperation with academic and research institutions” and the “fielding of [Artificial

Intelligence (AI) and Machine Learning (ML)] algorithms on areas that most enhance war-

fighting [73].” Since releasing this update, the Navy has established and funded the Task

Force Ocean (TFO) program to enable academic and research institutions to “initiate new

research to better understand and exploit the ocean environment.” TFO directs “exploration

of analytic techniques linking physical oceanographic variability with acoustic propagation”

as one of a few high priority areas for research [67]. This high priority area is the motiva-

tion of the present research. One of the present goal is to research, study, and implement

innovative computational techniques for principled uncertainty quantification, inference and

learning, with the long term vision of enabling and enhancing AI and Machine Learning for

naval applications, promoting U.S. Navy goals and overall understanding of the undersea

environment.

Due to the relatively high attenuation of visible electromagnetic radiation, acoustic waves

are a primary means of observing ocean features, identifying foreign objects, and undersea

communication. While acoustic propagation is a means of achieving these objectives, a

significant drawback is that acoustic wave propagation is largely dependent on the environ-

ment or medium, hence efficient prediction of underwater sound propagation is a non-trivial
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matter [32]. In general, modeling the ocean environment is difficult for a number of reasons.

The ocean is highly variable, over a very wide range of length and time scales and it is

impractical for direct and complete measurements, even with advances in satellite and other

remote sensing capabilities. Even with the ability to measure, there exists uncertainty in the

measured quantities due to instrument performance and the veracity of the measurement

with respect to the desired observation [16]. All of these uncertainties, when input to ocean

modeling, can evolve and nonlinear interact, leading to uncertainty growth and limited pre-

dictive capabilities [75, 46, 43]. As the ocean fields are commonly input to ocean acoustic

modeling, there is a transfer of uncertainties to underwater sound propagation modeling

that can result in multiple acoustic propagation regimes. As a result, there are compounded

complexities and uncertainties when modeling and predicting ocean acoustic propagation,

over a wide range of spatial and temporal scales [28, 47, 76, 72, 40, 100, 53, 89].

Ocean scientists commonly combine measurements and other data with physical conser-

vation laws to derive deterministic models of the ocean acoustic environment. Due to the

inherently unknown initial ocean state, it is useful in terms of forecasting or prediction to uti-

lize the data and conservation laws to obtain stochastic models (deterministic+statistics, see

[31, 53]) where we not only have a dynamically evolving representation of the environment,

but also an understanding of the uncertainty in our predictions due to the uncertain inputs

and parameters, model formulations, parameterizations, and other unresolved processes.

This stochastic modeling enables the quantification and forecast of probabilities of ocean

and acoustic fields. When observations are made, these prior forecast probabilities then also

allow data assimilation to improve the nowcasts and forecasts of how sound may propagate

and also include some assessment of the reliability of these estimates [77, 47, 44]. This can

be done in real-time while at at-sea [40, 53]. A related powerful application is the use of

travel times and other acoustic measurements to infer ocean physics fields using acoustic

tomography [30, 65, 14]. With all of this in mind, research has evolved to include adap-

tive sampling concepts such as Adaptive Rapid Environmental Assessment (AREA), where

data-assimilation is enhanced by in-situ optimal sampling algorithms to improve acoustic

predictions with limited resources (time or energy) [100]. This all begins with our ability

to accurately characterize the ocean environment according to measurable parameters and

how they affect the sound-speed, to accurately describe the variability in those parameters,

model the acoustic propagation, and finally provide an uncertainty characterization or pre-
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diction using an end-to-end modeling system [76]. In the next few paragraphs we provide

an overview of these components and related tasks, including ocean sound speed estimation,

acoustic modeling, uncertainty quantification, and reduced-order modeling.

The variation in ocean acoustic propagation is attributed to the different sound speed

properties. Specific undersea acoustic environments are challenging to model or characterize

as they require knowledge of three independent parameters: temperature (T in ∘C), salinity

(S in parts-per-thousand), and pressure/depth (z, meters). A commonly used equation to

model the relationship of these three parameters to sound speed 𝑐 is [64]

𝑐(𝑟, 𝑧) = 1449.2 + 4.6𝑇 − 0.055𝑇 2 + 0.00029𝑇 3 + (1.34 − 0.01𝑇 )(𝑆 − 35) + 0.016𝑧 (1.1)

The term Sound Speed Profile (SSP) describes how the sound speed varies in depth (𝑧)

and range (𝑟) and can be depicted as a function or table. In physical and mathematical

terms, it is a field varying in space and time. Even if the environment can be accurately

measured to produce an accurate representation of the above parameters for a given time

over a specified region, ocean acoustic computation remains challenging when considering

sub-mesoscale to mesoscale distances (∼ 1 to 100 km) or greater. For common numerical

methods such as finite differences, finite volumes, or finite elements, the spatial discretization

of the computational domain must be a fraction of the acoustic wavelength (𝜆) [32]. Shown

in (1.2)Assuming a nominal sound speed (𝑐) of 1500 m/s and a signal frequency (𝑓) as low

as 1 kHz, the discretization of a 10 km (range) by 3 km (depth) would need to be on the

order of less than 1m resulting in exorbitant computational cost.

𝜆 =
𝑐

𝑓
=

1500(𝑚𝑠 )

1 × 10−3(𝑠−1)
= 1.5𝑚 (1.2)

As a result, several simplifications are made to achieve acoustic models that can be utilized

in pratice.

Some of the practical acoustic models and computational methods developed specifically

for underwater sound propagation include the Wavenumber Integration (Fast-Field Meth-

ods), Multipath Expansion (WKB), Normal Modes, Ray Methods, and Parabolic Equations

[32]. These methods will each possess benefits and drawbacks in their implementations

depending on the acoustic regime they aim to characterize (e.g. high/low frequency, 2/3-

D, etc.). Figure 1-1 provides an overview of applications and where these methods may
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apply. While the methods in Fig. 1-1 effectively compute expected acoustic propagation,

Figure 1-1: Domains of Applicability of Underwater Acoustic Propagation Models. Adapted
from [23].

they are deterministic in nature - they are defined for one ocean environment at a specific

time without uncertainty quantification. Since the undersea environment is highly variable

and governed by complex partial differential equation models with significant uncertain-

ties in the initial and boundary conditions, parameters values, and functional forms, the

stochastic, thus the SSP is stochastic as in Figure 1-2, forecasting or predicting the acoustic

environment requires stochastic computational methods.

Given sufficient time and computational power, applying any of the mentioned acoustic

Figure 1-2: SSPs derived from CTD and XBT casts off the R/V Melville in the East China
for separated acoustic studies conducted by Ocean Acoustics Services and Instrumentation
Systems (OASIS). Adapted from[1].
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computational methods in a Monte-Carlo fashion may be feasible and provide a straight

forward means of producing acoustic forecasts that accurately capture the uncertainty in the

ocean environment and its effects on acoustic propagation. However, when power and time

are restricted, such as in autonomous applications, it is necessary to provide reduced-order

representations of the ocean acoustic uncertainty. For example, consider two autonomous

vehicles required to communicate over mesoscale distances in a variable ocean environment.

With respect to the forward problem (how an acoustic signal will propagate from transmitter

to the receiver), in order to appropriately position itself to transmit or receive acoustic

signals, the vehicle should place itself where it has the best probability of receiving the

signal given the uncertainties in the ocean environment. Figure 1-3 depicts a simplified

scenario with two possible sound propagation regimes in the arctic. In this case with each

regime being equally likely, a vehicle desiring to receive the signal should place itself at a

depth less than 100 m to have a better probability of reception. Possibly more interesting,

consider a backward problem. If a signal parameter (e.g. travel time) can be measured, this

parameter may enable the vehicle to infer a more accurate real-time representation, with

associated uncertainty, of the ocean environment through which the signal traveled and an

estimate of the signal transmitters position.

There are several computational methods for reduced order modeling and uncertainty

quantification. Empirical Orthogonal Functions, also known as Principle Component Anal-

ysis, derived from direct measurement, provides a means of capturing variablity in SSPs

while reducing the number of computations [103]. We could also consider spectral methods

that allow us to exploit the statistics [41]. The stochastic Dynamically Orthogonal differ-

ential equations have been derived to evolve stochastic fields while preserving its dominant

statistics [78, 97, 25]. With such stochastic predictions, we can use our gained knowledge of

the forecast probability distributions to complete non-Gaussian Bayesian data assimilation

[80, 58] and optimize the data collection using information-based adaptive sampling and

principled model learning [44, 50, 48].

This thesis explores and applies stochastic differential equations and computational

methods for underwater acoustic computation pertaining to travel times of signal propa-

gation. For the first time, it then implements and evaluates the method of dynamically

orthogonal equations (DO) to acoustic ray tracing (DO-Ray) with a comparison to results

obtained from a validated Monte-Carlo computation. This method provides a means of cap-
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(a) (b)

(c) SSP (d) Ray Trace Plot

Figure 1-3: The typical or ideal Arctic environment consists of a positive sound speed
gradient yeilding ray paths that transit throughout the depth of the water column. The
warm water intrusion depicted in (c) result in a higher sound speed in the upper portion of
the water column resulting in sound being refracted away from the maximum sound speed.
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turing the stochastic variation in an ocean’s acoustic propagation due to an uncertain SSP,

using a dynamic reduced oder representation of the stochastic ray field. Given the ability

to efficiently compute ray traces for thousands of ocean environments, we could then extend

the algorithm to compute acoustic wave travel times or even intensity.

1.2 Thesis Overview

This thesis utilizes the common acoustic computation methodology, Ray Tracing, with the

stochastic computational method Dynamically Orthogonal Equations (DO-Ray) to obtain

reduced order representations of an ensemble of ocean acoustic environments. For compar-

ison and validation, it also implements a deterministic ray tracing computation scheme in

order to produce individual realizations to compare with the new methodology. The DO-Ray

methodology allows for the simultaneous computation of thousands of ocean environments,

whose SSP distribution may be Gaussian or non-Gaussian.

Chapter 2 begins with the basic theory of wave propagation in underwater acoustics.

The application of numerical methods methods in this thesis emphasizes the prediction and

measurement of ocean acoustics travel time. For implementation, Ray methods, specifically

ray tracing, is selected, with a focus on higher acoustic frequencies. Other ocean acoustic

computational methods can be used to compute travel time but present their own compu-

tational challenges. For reference, Chapter 2 includes a review of the most common method

Parabolic Equations, and a less known method method of prediction acoustic wave fronts

based on Level Sets. Lastly, Chapter 2 highlights three methods of stochastic computa-

tion used by ocean acousticians to represent multiple acoustic propagation environments.

It finishes with a background on the dynamically adaptive stochastic methodology to be

implemented, the DO differential equations.

Chapter 3, on the stochastic DO-Ray Methodology, presents the how the combined

methods of Ray Tracing and DO differential equations are implemented and validated. It

includes how a deterministic algorithm is implemented and validated to form a basis for

comparison. The chapter includes the detailed derivation for DO-Ray and is immediately

followed by a detailed explanation of some of the terms and what they imply. Chapter 3

finishes with sections detailing unique computational or numerical challenges associated with

the presently implemented algorithms as well an assessment of feasibility and convergence
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to Monte-Carlo implementations.

Chapter 4 presents the results of stochastic DO-Ray implementation with three con-

structed scenarios or regimes of sound speed variability: Constant Gradient, Deep Sound

Channel, and Sonic Layer Depth. Each scenario contains thousands of realizations of possi-

ble SSPs from which individual realizations can be constructed using the DO-Ray method

and compared to individual realizations computed by deterministic method.

Chapter 5 discusses this thesis’s conclusions and highlights a few areas for future work.

DO has been implemented for several other stochastic problems and enhanced with tools for

data-assimilation. With a computationally efficient and accurate DO-Ray implementation,

we could apply these schemes to realistic ocean acoustic conditions and utilize the existing

non-Gaussian data-assimilation tools. We would then improve our ability to characterize

and predict stochastic ocean acoustics environments, with a wide range of real scientific and

naval applications.

26



Chapter 2

Background

2.1 Basic Acoustic Wave Theory

To better understand the complexity of Ocean Acoustic Computation, we first review the

underlying physics and equations associated with acoustic propagation. Notations can be

a complicating factor; therefore, we lay out the equations in a selected notation in which

the remaining derivations will be annotated. The Cartesian system is chosen as the default

in this thesis; alternate coordinate systems will be specifically identified when used. For

consistency, once a variable is assigned a definition, it will remain that variable for the

remained of this thesis.

2.1.1 Wave Equation Foundations

There are multiple ways to mathematically derive the acoustic wave equation both with or

without physical intuition. To establish the foundation of the acoustic wave equation as well

as viable definitions, we will start from mathematical conservation laws, augmented with an

equation of state. The result will be a 3-D wave equation that relates density to pressure.

The first and most simple derivation of what we will refer to as the wave equation is a

routine exercise in calculus is now summarized. We consider an continuous function of both

space and time that represents a 1-D wave whose amplitude in space is parameterized by

time (see Figure 2-1): 𝑔(𝑠) = 𝑔(𝑥− 𝑐𝑡). By taking the derivative with respect to space (𝑥),

and applying the chain rule, we obtain

𝜕2𝑔(𝑠)

𝜕𝑥2
=
𝜕2𝑔(𝑠)

𝜕𝑠2
. (2.1)
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Figure 2-1: 1-D Wave parameterized by time (𝑡) at 𝑡 = 𝑡1 and 𝑡 = 𝑡2

By letting 𝑐2 = (𝜕2𝑔(𝑠))/(𝜕𝑠2), taking derivativea with respect to time (𝑡), and applying

the chain rule, we obtain
1

𝑐2
𝜕2𝑔(𝑠)

𝜕𝑡2
=
𝜕2𝑔(𝑠)

𝜕𝑠2
. (2.2)

This is what is commonly known as the second-order 1-D wave equation:

𝜕2𝑔(𝑥− 𝑐𝑡)

𝜕𝑥2
=

1

𝑐2
𝜕2𝑔(𝑥− 𝑐𝑡)

𝜕𝑡2
. (2.3)

In order for a function to satisfy the wave equation it must satisfy the above property.

For example, consider a sine wave traversing in space and time with amplitude (A) wave,

wave number k, and radial frequency 𝜔:

𝑔(𝑥− 𝑐𝑡) = 𝐴 sin (𝑘𝑥− 𝜔𝑡) (2.4)

By taking the requisite partial derivative to both sides of (2.4), we observe that (2.4) satisfies

the 1-D wave equation (2.2).

This simple derivation is useful in gaining some basic understanding of wave propagation;

however, it is the most general application and does not provide intuition or insight into

the physics of underwater sound. To understand ocean acoustics, and how the properties

of the medium affect it, it is more relevant to derive a three dimensional understanding of

the wave equation propagating through a medium. Ultimately we desire an equation that

relates the relevant properties of the medium (density) to the parameters of the acoustic field.

Depending on the intended application, the 3-D equation can be derived into several forms

[32] including for pressure, particle velocity, velocity potential, or displacement potential.

While all of these forms are valid, the most useful representation for later derivations is the
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pressure representation.

The derivation begins with two governing hydrodynamic conservation equations, mass

and momentum, applied to a mass of the medium through which the wave travels. From

this point on, we also assume that the medium is seawater and consider the corresponding

equation of state. As a whole, we have,

Conservation of Mass:
𝑑𝜌

𝑑𝑡
+ ∇(𝜌𝑉 ) = 0 (2.5)

Conservation of Momentum:

𝜌
𝐷𝑈

𝐷𝑡
= −∇𝑝 (2.6)

Equation of State (Taylor series expansion):

𝜌 = 𝜌(𝑝) + (𝑝− 𝑝0)
𝑑𝜌(𝑝0)

𝑑𝑝
+

(𝑝− 𝑝0)
2

2!

𝑑2𝜌(𝑝0)

𝑑𝑝2
+ . . . (2.7)

where 𝜌 is the fluid density, 𝑝 is pressure, 𝑉 is the 3-D volumetric flow rate of the seawa-

ter, and 𝑈 is the 3-D particle velocity that incorporates both particle speed and the fluid

speed. The subscript "0" indicates that this is the reference parameter of a reference ocean’s

properties (i.e. without the propagating sound wave). Sound is produced by the natural or

artificial phenomena of forced mass injection [32]. Therefore, assume a small mass injection

causes small perturbations denoted by the subscript "1." Hence:

𝑝 = 𝑝0 + 𝑝1 (2.8)

𝑈 = 𝑈0 + 𝑈1 (2.9)

𝜌 = 𝜌0 + 𝜌1 (2.10)

Assume that the perturbation in density (𝜌1) is much smaller than 𝜌0, synonymous with

seawater being nearly incompressible, and that the reference particle velocity is zero. We

then have:

𝜌0𝑈1 >> 𝜌1𝑈1 (2.11)

and
𝜕𝜌0
𝜕𝑡

= 0 (2.12)
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Applying (2.11) and (2.12), and a first-order approximation of (2.7), we can approximate

(2.7) through (2.6) with linearized versions of these three hydrodynamic equations:

Equation of State-Linearized:

𝜌1 = 𝑝1
𝜕𝜌(𝑝0)

𝜕𝑝
(2.13)

Conservation of Mass-Linearized:

𝜕𝜌1
𝜕𝑡

+ 𝜌0∇𝑉 1 = 0 (2.14)

Conservation of Momentum-Linearized:

𝜌0
𝜕𝑈1

𝜕𝑡
= −∇𝑝1 (2.15)

By taking the time derivative of (2.14), the divergence of (2.15), and representing the

relation of change in 𝜕𝜌
𝜕𝑝 as the sound speed of the material squared (𝑐2), the final 3-D

acoustic wave equation relating density to pressure is:

∇2𝑝1 =
1

𝑐2
𝜕2𝑝1
𝜕𝑡2

(2.16)

The source of the sound to this point has been left unaddressed, but for now we will

rearrange (2.16) to include a time harmonic source where the amplitude (𝑆𝑓 ) is a function

of range. The computed source level (𝑠(x, 𝑡)) in the acoustic field is then also a function of

position in relation to the source and time:

∇2𝑝1 −
1

𝑐2
𝜕2𝑝1
𝜕𝑡2

= 𝑠(x, 𝑡) = 𝑆𝑓 (x)𝑒−𝑖2𝜔𝑡 (2.17)

2.1.2 Helmholtz Equation

There are several important points to make regarding the acoustic wave equation in the

form presented in (2.16). As mentioned in Chapter 1, though (2.16) appears to be amenable

to classical or relatively straight forward computational methods such as finite differences

or finite elements, the resolution of the 3-D domain would have to be a fraction of the

acoustic wavelength. Also, if solved in a 3-D spatial domain with a given time step, the time

domain compounds the complexity and computational expense. The majority of modern

30



computational methods begin with a simple dimension reduction of (2.16) to an equation

known as the Helmholtz Equation. The only coefficient in front of the differential operators

is a function of the sound speed. While the sound speed can be variable spatially, due to the

fast underwater sound-speed, it can be assumed to not vary with time. This is the so-called

frozen-ocean approximation [37, 32]. By application of Fourier Transform, it allows to easily

alternate between the time and frequency domains, with the following transforms:

𝑓(𝑡) =
1

2𝜋

∫︁ ∞

−∞
𝑓(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔 (2.18)

and

𝑓(𝜔) =

∫︁ ∞

−∞
𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 (2.19)

Through this conversion we achieve a reduction in dimension and obtain a problem simpler

to solve for given a specific frequency (𝜔), the Helmholtz Equation:

∇2𝑝− 𝜔2

𝑐2(x)
= 𝑆𝜔(x) . (2.20)

Moving into the frequency domain thus allows for direct solution methods at discrete fre-

quencies The approach is thus most applicable to narrow-band acoustic applications [32].

The Helmholtz Equation forms the basis of the derivation of several ocean acoustic

computational methods, including: Wave-number Integration, Normal Modes, Ray Methods,

and the Parabolic Equation.

2.1.3 Source Representation

A practical description of the source represents the sound as being produced by the natural

or artificial phenomena of forced mass injection. Several assumptions are then often made

about the shape of the source in the time domain [32]. As the methods to be derived are in

the frequency domain, the simplest source is represented as a point source at position x0,

and mathematically as a Dirac delta function, resulting in:

∇2𝑝− 𝜔2

𝑐2(x)
= −𝛿(x − x0) . (2.21)
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2.2 Ocean Acoustic Computational Methods

2.2.1 Parabolic Equation

In 1974, F.D. Tappert wrote about “A New theoretical-numerical method developed which

enables one to accurately and efficiently compute the entire two-dimensional low-frequency

underwater acoustic field. . . based on a parabolic equation approximation [90].” In the

1990’s, Jensen et al identified the Parabolic Equation Method as becoming “the most popular

wave theory technique for solving range-dependent propagation problems in ocean acoustics"

[32]. A cursory literature review of ocean acoustics since 2019 up to today yields over 100

publications that use or modify the Parabolic Equation method, making it the most popular

as compared to Wavenumber Integration (25), Normal Modes (67), and Ray methods (81).

Because of its popularity, the next paragraphs are dedicated to exploring the Parabolic

Equation method and its use with Fourier Transforms to compute signal travel times.

The derivation of the Parabolic Equation method presented is the summary of the more

detailed derivation provided by Tappert in "Wave Propagation in Underwater Acoustics"

[91]. Still assuming a time harmonic point source at range = 0 and depth 𝑧𝑠, and shifting

to cylindrical coordinates in 2-D (𝑟- cylindrical radius, 𝑧 - depth), (2.16) becomes:

𝜕2𝑝

𝜕𝑟2
+

1

𝑟

𝜕𝑝

𝜕𝑟
+
𝜕2𝑝

𝜕𝑧2
+ 𝑘20𝑛

2𝑝 =
−4𝜋

𝑟
𝑆𝜔𝛿(𝑧 − 𝑧𝑠) (2.22)

In (2.22), 𝑘0 = 𝜔
𝐶0

, 𝐶0 is a reference sound speed, and 𝑛 = 𝐶0
𝐶(𝑟,𝑧) corresponds to the index

of refraction.

Away from the source, we define the function 𝑢 as,

𝑝 =
𝑢√
𝑟
, (2.23)

and make the far-field approximation, 𝑘0𝑟 >> 1, to obtain:

𝜕2𝑢

𝜕𝑟2
+
𝜕2𝑢

𝜕𝑧2
+ 𝑘20𝑛

2𝑝 = 0 . (2.24)

We then define the following operators:

𝑃 =
𝜕

𝜕𝑟
(2.25)
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and

𝑄 = (
1

𝑘20

𝜕2

𝜕𝑧2
+ 𝑛2)1/2 (2.26)

which allows us to rewrite (2.24) into

(𝑃 2 + 𝑘20𝑄
2)𝑢 = 0 . (2.27)

This is an elliptical equation that can be factored, resulting in a formulation that separately

represents the incoming and outgoing portion of a wave:

(𝑃 + 𝑖𝑘0𝑄)(𝑃 − 𝑖𝑘0𝑄)𝑢+ 𝑖𝑘0[𝑃,𝑄]𝑢 = 0 (2.28)

where [𝑃,𝑄] is referred to as the commutator of operators 𝑃 and 𝑄, i.e.

[𝑃,𝑄]𝑢 = 𝑃𝑄𝑢−𝑄𝑃𝑢 . (2.29)

This operator may be ignored in "weakly" range dependent environments. This assumption,

and that of a wave that is only outgoing, the Generalized Parabolic Equation is obtained as

[17]:

𝑃𝑢 = 𝑖𝑘0𝑄𝑢 . (2.30)

Summarizing to this point in the derivation, (2.30) is now a first-order partial differential

equation with respect to 𝑟, or "Parabolic" instead of elliptical as in (2.24). Assuming the

far-field approximation is valid, it accurately computes outgoing waves by range marching,

neglecting any backscatter, with some small error associated by neglecting (2.29).

Figure 2-2: The parabolic equation "marches" in range, evolving the acoustic field in 2D
slices. Adapted from [4].
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The last aspect to discuss with regards to computing with the Parabolic Equation method

is how to treat the pseudo-differential operator 𝑄. Computing the square root of a differ-

ential operator is non trivial and further compounded by that in implementation, values

are discrete in range and depth, thus the square root of a matrix is needed. To enable

efficient computations one more approximation is commonly needed, further limiting this

computational method. We revise (2.26), and consider its Taylor series expansion:

𝑞 = 𝜖+ 𝜇 (2.31)

𝜖 = 𝑛2 − 1 (2.32)

𝜇 =
1

𝑘20

𝜕2

𝜕𝑧2
(2.33)

𝑄 = (1 + 𝑞)
1
2 = 1 +

𝑞

2
− 𝑞2

8
+
𝑞3

16
+ ... (2.34)

Taking only the first two terms of (2.34) results an a narrow-angle equation, considered

accurate for propagation within 10∘ to 15∘ off the horizontal [32].

𝑃𝑢 = 𝑖𝑘0(1 + 𝑞/2)𝑢 . (2.35)

This derivation result, (2.35), is a first-order partial differential equation with respect to 𝑟,

or "Parabolic" instead of "Elliptic" as in (2.24). Assuming the far-field approximation is

valid, it accurately computes outgoing waves by range marching. The errors or limitation

of this form is that it neglects any backscatter, makes small errors induced by neglecting

(2.29), and is limited to narrow angles due to truncating the Taylor series approximation

(2.34).

2.2.2 Ray Methods

Ray methods [32, 34] are used for many applications associated with wave propagation

(e.g. Radar, Optics, etc). As stated earlier, they are one of the more popular methods in

underwater acoustics. The "Ray" refers to a continuous path that is normal to the wave

front. Rays are useful to explain wave propagation because most individuals have been

introduced to concepts such as Snell’s Law in physics or through the practice of shining a

light into a tank of water and observe the results and special effects. By conceptualizing the
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wavefront as being composed of an infinite number of rays at a given time, it is also often

easier to understand how a wave might refract or reflect as is passes through a medium.

Ray Methods allow for the computation of travel time and the pressure field, but they

begin with a process of representing the wavefront in a Lagrangian sense referred to as "Ray

Tracing." For relations to level-set methods, we refer to section (2.2.3). Ray Tracing forms

the skeleton of the acoustic field, and if computed accurately and efficiently, provides a

model to where the sound energy will travel.

The derivation begins with 2.21 and assumes that the solution is of the form:

𝑝(x) = 𝑒𝑖𝜔𝜏(x)
∞∑︁
𝑗=1

𝐴𝑗(x)

(𝑖𝜔)𝑗
. (2.36)

Taking the associated partial derivatives with respect to x and inserting them back into

(2.21) results in the following sequence of equations:

𝑂(𝜔2) : |∇𝜏 |2 =
1

𝑐(x)2

𝑂(𝜔) : 2∇𝜏 · ∇𝐴0 + (∇2𝜏(x))𝐴0 = 0

𝑂(𝜔1−𝑗) : 2∇𝜏 · ∇𝐴𝑗 + (∇2𝜏(x))𝐴𝑗 = −∇2𝐴𝑗−1, 𝑗 = 1, 2, . . .

(2.37)

Typically, this method only requires that the leading terms of (2.37) are used, which is

know as the high frequency approximation. While there is no definitive answer to the mini-

mum frequency allowed, it is generally accepted that the wavelength should be significantly

smaller than features of the water column (e.g. bottom depth, sound ducts, bathymetric fea-

tures, etc.) [32]. To obtain estimates of travel time, solving the first equation, also known

as the eikonal equation, is required. Reviewing the characteristics of (2.36), we see that

constant phase values for 𝜏(x) correspond to the wave front. By converting the eikonal

equation to ray coordinates, and knowing that ∇𝜏 is perpendicular to the wave front, the

direction of the ray travel, at speed 𝑐(x), over a length 𝑠 can be defined as:

𝑑x
𝑑𝑠

= 𝑐(x)∇𝜏(x) . (2.38)

By squaring the absolute value of both sides of (2.38) and then substituting the eikonal
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Figure 2-3: The ray leaving the source at a specified angle travels perpendicular to the wave
front. Here, we see that infinitesimal changes in the Cartesian plane (𝑥1,𝑥2) corresponds to
infinitesimal steps along the ray or arc-ength.

equation from (2.37):

|𝑑x
𝑑𝑠

|2 = 𝑐(x)2|∇𝜏(x)|2 =
𝑐2(x)

𝑐2(x)
= 1 (2.39)

Therefore 𝑑x
𝑑𝑠 is of magnitude 1, where 𝑠 is the arclength of the ray. Taking the derivative of

(2.39) with respect to 𝑠 and using the relationship (2.38), the ray trajectory is expressed as:

𝑑

𝑑𝑠
(

1

𝑐(x)

𝑑x
𝑑𝑠

) = − 1

𝑐(x)2
∇𝑐(x) (2.40)

A practical way to express this second order ordinary differential equation (ODE) consists

of using an auxiliary variable 𝜉. This 𝜉 can be interpreted as a vector that, when scaled

by 𝑐(x), is the tangent vector to the ray trajectory at each step 𝑠. The ray trajectories can

then be expressed as a coupled set of first-order ODEs. For 2-D (Range = 𝑥1, Depth=𝑥2)

propagation problems, denoting

x(𝑠) =

⎡⎣𝑥1
𝑥2

⎤⎦ ; 𝜉(𝑠) =

⎡⎣𝜉1
𝜉2

⎤⎦ , (2.41)

the coupled set of ODEs are written as:

𝑑𝜉(𝑠)

𝑑𝑠
= − 1

𝑐(x)2
∇𝑐(x) (2.42)

𝑑x(𝑠)

𝑑𝑠
= 𝑐(x)𝜉(𝑠) . (2.43)

While these equations could be parameterized by time as easily as by distance along the ray

s, given a ray path, it is a straightforward integral to determine the ray travel time in terms
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of the ray arclength 𝑠 (𝑡𝑠):

𝑡𝑠 =

∫︁ 𝑠

0

1

𝑐(𝑠′)
𝑑𝑠′ (2.44)

In summary, to obtain travel times for a given wave front, by taking advantage of the

eikonal equation and by representing the wavefront by "rays" that propagate normal to the

wave front, we obtained two ODEs that can be easily numerically integrated. They provide

the rays path from which one can obtain travel times by numerical integration along the

ray paths. We note that in the derivation of the ray trajectories, the 𝜔 term is not present.

This implies that this representation of the wavefronts is frequency independent, though it

still must satisfy the high frequency approximation (i.e. the first term in the approximation

does not contain 𝜔).

There are nonetheless significant drawbacks to this method. First, the derivations re-

quired shifting into ray coordinates for which boundary conditions in Cartesian coordinates

are not directly translated [e.g. 36]. Therefore, reflections must be evaluated when they

occur and thus modeled outside of the solver for the ODE pairs. Second, in stratified seabed

bottom, a portion of the ray will transmit into the bottom and reflect at another depth

to return to the seawater medium. This would require additional rays to track and again

require implementations outside solving the ODE pairs. Chapter 3 provides methods for

reflection implementation in a stochastic setting but does not account for the transmitted

ray.

Third, as seen in Figure 2-4, ray tracing can develop shadow zones that imply the

wave transmit no or very small energy into this region. While acoustic energy transmission

tends toward areas of low soundspeed, energy would still be transmitted into these zones

(e.g. solving for the wavefront could reach these shadow zones). Still practically, if the signal

reception is the goal, the shadow zones should be avoided.

Lastly, to determine ray travel time, the ray used for integration must pass from the

source to the receiver. We refer to these specific rays as "eigenrays." Since the rays represent

a wavefront with discretized points, there is no guarantee that rays will pass through the

receiver with a certain tolerance and one may thus require additional processing to identify

these eigenrays. Here are three methods that can be used to determine travel times at a

specific receiver location:

37



Figure 2-4: Example of a source at a depth of 40 m. Rays show Surface-duct propagation
in the Norwegian Sea; however only valid for high frequencies. Adapted from [32]

∙ Discretize initial ray angles (𝛿𝜃) to minimize distance between rays, add more rays,

∙ Use a numerical scheme such as bisection to trace rays between 𝜃’s that bound the

receiver, or

∙ Interpolate travel time based adjacent rays.

Of course, each of these add computational expense.

2.2.3 Level Sets

Level Sets is another method that is more popular in optics research, but that can also be

used to model underwater acoustic propagation as the fundamentals are nearly the same.

The Level Sets method is related to the ray tracing method in that both aim to tracking a

wave front. While ray tracing represents the characteristics of the wave front one-by-one,

the level set methods integrates the whole wave front in space and time. As ray tracing

considers discrete points along the wave front that can spread as the wave is propagated in

space and time, one issue is that the resolution in the wave front decays as the wave spreads,

as shown in Figure 2-5. For this reason an Eulerian representation of the wave front, i.e. a

level-set method, may be preferable. Instead of solving for discrete points on the wavefront,

level-set methods solve the Hamilton-Jacobi PDE for the wavefront on a grid in space [68].

For relations of level-set methods to characteristics, Hamilton-Jacobi equations, and path

planning, we refer to [60, 59, 50, 24, 36].
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Figure 2-5: Initial set of points forming a circle spread apart during ray tracing. Adapted
from [68]

Assuming (2.17) has a solution similar to (2.36), but remaining in the time domain,

𝑝(x, 𝑡) = 𝑒𝑖𝜔𝜏(x,𝑡)
∞∑︁
𝑗=0

𝐴𝑗(x, 𝑡)
(𝑖𝜔)𝑗

, (2.45)

𝜏(x, 𝑡) remains the phase function. Substituting (2.45) back into the wave equation, and

making a similar high frequency approximation as for Ray Tracing, results in a Hamiltion-

Jacobi type partial differential equation (PDE):

𝜏(x, 𝑡) + 𝑐(x)|∇𝜏(x, 𝑡) = 0 (2.46)

For a 2-D system, to account for reflections, this method evolves the acoustic wavefront

as a strip in a higher dimensional reduced phase space with coordinates (𝑥1, 𝑥2, 𝜃) where 𝜃

represents the normal direction at any given point along the wavefront [63, 12, 9]. The strip
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is represented as the intersection of two level set functions:

𝜕

𝜕𝑡
𝜓1(𝑥1, 𝑥2, 𝜃) + 𝑉 (𝑥1, 𝑥2, 𝜃) · 𝜓1 = 0 , (2.47)

𝜕

𝜕𝑡
𝜓2(𝑥1, 𝑥2, 𝜃) + 𝑉 (𝑥1, 𝑥2, 𝜃)𝜓2 = 0 . (2.48)

The results are illustrated as the spatial representations of (2.47) and (2.48) in Figure 2-6.

The velocity field (the sound-speed-profile, SSP), 𝑉 (𝑥1, 𝑥2, 𝜃), of the strip’s propagation is

(a) (b)

(c)

Figure 2-6: The first picture shows the zero level set surfaces of two level set functions. The
second picture shows the curve of intersection of those surfaces. The final picture shows the
wavefront described by that curve. Adapted from [68].
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derived from the Liouville equations:

𝑉 (𝑥1, 𝑥2, 𝜃) =

⎡⎢⎢⎢⎣
𝑐(x) cos 𝜃

𝑐(x) sin 𝜃

𝜕𝑐(x)
𝜕𝑥1

sin 𝜃 − 𝜕𝑐(x)
𝜕𝑥2

cos 𝜃

⎤⎥⎥⎥⎦ . (2.49)

Finally, the wavefront, 𝑊 (x, 𝑡)), in 2-D is defined by:

𝑊 (x, 𝑡)) = {x|𝜓1(𝑥1, 𝑥2, 𝜃) = 𝜓2(𝑥1, 𝑥2, 𝜃) = 0} . (2.50)

Level Sets can be a useful method for computing acoustic travel times with the benefit of

high resolution of the wavefront properties. They do not require the use of Fourier transforms

and allow for direct application of physical boundary conditions in the same domain as the

solver. However, there are several inefficiencies with the Level Sets method as well. The

method still makes a high frequency approximation and, to be accurate, the propagation at

each time-step should correspond to a distance less than the acoustic wavelength. Due to the

need of representing multiple reflections, the method also requires solving a PDE definied in

2-D into a 3-D space by adding the 𝜃 parameter representing the direction of propagation.

This for example allows tracking additional wave fronts when waves are transmitted to

and from the bottom. The Eulerian approach can present difficulties with multi-valued

wavefronts, which is likely to occur as waves will fold over on another due to reflections

[98, 62]. Lastly it is not easily extended to incorporate the pressure field computation for

which we still may require using ray methods [63].

2.3 Uncertainty Quantification Methods and Reduced Order

Models (ROMs)

2.3.1 Monte-Carlo

Monte-Carlo Methods are the most popular and the simplest uncertainty quantification

method to implement [41]. This is especially attractive when we take into account the

complexities associated with acoustic modeling, even for a fixed specific ocean environment.

Given the requisite amount of time and computational power, Monte-Carlo methods require

nothing more than performing deterministic or stochastic sample path computations on the
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sampled distribution of inputs (i.e. a "for" loop). If the underlying distribution is sufficiently

sampled, we can obtain an accurate distribution of the stochastic process.

In the preceding paragraph, we included an important caveat that "the underlying dis-

tribution is sufficiently sampled." "Sufficiently sampled" implies that we have run our model

on a sufficient number of randomly or well-chosen sampled inputs from a known distribu-

tion such that our resultant distribution of solutions converges to the real distribution. The

convergence rate of the variance based on the number of samples 𝑀 is on the order of 𝑀− 1
2 .

In application, it is frequent for the sample sizes required for convergence to be so large that

they exceed the computing power of most computers; however there exists many techniques

that can reduce the requisite sample size [33].

We discussed Mont-Carlo methods here not to elaborate on the efficiencies to be gained

with alternate Monte-Carlo approaches, but instead to make two points:

∙ Given enough samples and an accurate deterministic model, we can converge on the

actual distribution outputs. This is useful in evaluating the results of alternate meth-

ods.

∙ Monte-Carlo though simple and robust, may not be feasible in compact computation

scenarios or in large nonlinear problems such as coupled ocean physics and acoustics

forecasting.

2.3.2 Empirical Orthogonal Functions

Outside specific fields (climatological, meteorological, or oceanographic), Empirical Orthog-

onal Function (EOF) is nearly synonymous with the more frequently referred to Principle

Component Analysis (PCA). Singular Value Decomposition (SVD) is the key in both of

their applications [38]. Scientist studying the ocean and atmosphere have frequently used

EOFs since their inception in mid-20𝑡ℎ century [39, 61, 65].

With a set of sampled data, EOFs are used to represent the data by performing a linear

combination of eigenvectors or functions that provide a reduced-order approximation of the

data set that is optimal in the sense of variance explained [61]. The reduced-order model

(ROM) arises because it is desirable to use the minimum number of eigenvectors as possible

[61]. Conceptually, consider snapshots of SSPs of a given area of the ocean as a stochastic

field due to the uncertain nature of the ocean environment. We can then construct the mean
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and variance of the field that links SSP information to all data points. Since the covariance

matrix will be both real and symmetric, it can be decomposed into [66]:

∙ Orthogonal Eigenvectors: Statistically independent patterns within the field that are

spatially orthogonal

∙ Positive eigenvalues that correspond to the variance that the eigenvector pattern ac-

counts for

Ocean Acoustic Tomography offers an excellent example of how we may use EOFs as

a ROM to compute sound propagation travel times. The aim of Munk et al. [65] is to

resolve temperature and current field through sound propagation through matrix inversion,

known as acoustic tomography. While we do not intend to explain tomography in detail,

outlining the application of EOFs for acoustic inversion is a relevant example and illustrates

some of this method short comings. The following explanation follows the derivation for the

inversion of travel times in [14].

Since ocean currents and sound propagation speeds are on the order of 10−1 and 103

respectively, we assume that current will have a negligible effect on travel times; therefore,

given a ray path, we can compute the travel time from a source to the receiver using (2.45).

Re-writing (2.45) as:

𝑡𝑛 =

∫︁
𝑆𝑛

𝑑𝑠

𝑐(x)
(2.51)

where 𝑆𝑛 corresponds to the 𝑛𝑡ℎ ray path that leaves the acoustic source and arrives precisely

at the receiver, for the given SSP field. Acousticians refer to these specific rays as eigenrays.

Assume, based on prior knowledge that the best estimate is the mean SSP, 𝑐(x). We wish

to compute the difference in travel time given an SSP field,

𝛿𝑡𝑛 = 𝑡𝑛 − 𝑡𝑛 =

∫︁
𝑆𝑛

𝑑𝑠

𝑐(x)
−
∫︁
𝑆𝑛

𝑑𝑠

𝑐(x)
. (2.52)

In (2.52), 𝑆𝑛 corresponds to the 𝑛𝑡ℎ ray path in the mean SSP environment. Making

the assumption, or synonymous statements:

𝑆𝑛 ≈ 𝑆𝑛 (2.53)
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or applying Fermat’s principle [65], we can approximate (2.52) as:

𝛿𝑡𝑛 ≈
∫︁
𝑆𝑛

(︂
1

𝑐(x)
− 1

𝑐(x)

)︂
𝑑𝑠 (2.54)

Because 𝛿𝑐(x) is 𝑂(101) and 𝑐(x) is 𝑂(103), making one last assumption we can conclude

that (2.52) is: ∫︁
𝑆𝑛

𝑐(x) − 𝑐(x)

𝑐(x)𝑐(x)
𝑑𝑠 ≈

∫︁
𝑆𝑛

𝛿𝑐(x)

𝑐2(x)
𝑑𝑠 , (2.55)

where 𝛿𝑐(x) expresses how much a given SSP, 𝜂, varies from the mean SSP. The remainder

of this derivation implements the EOFs or PCA to create a ROM that allows for an input of

SSPs and creates an output of corresponding perturbations in travel time. Let 𝛿𝑐(x) can be

expressed as a linear combination of 𝑀 orthogonal functions 𝑓𝑚(x), then (2.55) becomes:

𝛿𝑡𝑛 ≈
∫︁
𝑆𝑛

𝑀∑︀
𝑚=1

𝑎𝑚𝑓𝑚(x)

𝑐2(x)
𝑑𝑠 =

𝑀∑︁
𝑚=1

𝑎𝑚

∫︁
𝑆𝑛

𝑓𝑚(x)

𝑐2(x)
𝑑𝑠 . (2.56)

Consider a matrix 𝐶, where rows of 𝐶 correspond to the depth (𝑧) dependence of a

range-independent, 𝛿𝑐(x), and the columns to the individual realizations of the ocean:

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿𝑐1(𝑧1) · · · · · · · · · 𝛿𝑐𝐻(𝑧1)
...

. . .
...

...
... · · · 𝛿𝑐𝜂(𝑧𝑖) · · ·

...
...

...
. . .

...

𝛿𝑐1(𝑧𝐷) · · · · · · · · · 𝛿𝑐𝐻(𝑧𝐷)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟  ⏞  

𝜂𝜖[1, 2, · · · , 𝐻]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
depth(𝑧𝑖), 𝑖𝜖[1, 2, · · · , 𝐷] . (2.57)

Let 𝛿t consist of 𝑁 eigenrays passing from the source to the receiver in the mean SSP. By

performing the SVD of C = UΣVT, we achieve a reduction in the model by determining

the number of eigenvectors of 𝑈 , also known as the orthogonal eigenfunctions of 𝑐1(x), · · · ,

𝑐𝐻(x), to include based on the relative sizes of the singular values in Σ. We assume 𝑀

eigenvectors are selected, with 𝑀 << 𝑟𝑎𝑛𝑘(𝐶). Let 𝑓𝑚(x) be the eigenvectors (U) of C

and A = ΣVT whose entries correspond to the coefficients 𝑎𝑚. We can now create the

following matrix:

B =

∫︁
𝑆𝑛

𝑓𝑚(x)

𝑐2(x)
𝑑𝑠; for 𝑛 = 1 : 𝑁 (2.58)
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B must be a 𝑁x𝑀 , and when multiplied by the columns of the 𝑀x𝐻 A matrix yields the

approximate eigenray perturbations in travel time for each ocean realization:

T = BA (2.59)

where:

T =

⎡⎢⎢⎢⎣
...

...

𝛿t1 · · · 𝛿t𝐻
...

...

⎤⎥⎥⎥⎦ (2.60)

The simplicity of (2.59) is very attractive for two clear reasons. First, given a measured set of

perturbations in travel time from the travel time of the mean SSP, for the cost of computing

the pseudo-inverse of B (B−1), we could compute the best fit coefficients 𝑎𝑚, reconstructing

a best guess for the SSP. Second it appears as though we could create additional realizations

for 𝛿t by selecting new coefficients for 𝑎𝑚. While this is a nice feature of this method, it is

limited.

Though prevalent in ocean sciences, EOFs remain limited to certain applications. EOFs

are highly dependent on the domain for which they are employed, it is difficult to know the

number of realizations or samples needed for EOFs to accurately represent the SSP field,

and in practice EOFs are based on sparse or non-synoptic sampled environments that will

also have some measurement errors. Overall, all of the uncertainties can make it difficult

to determine the significant from the insignificant eigenvectors [66, 56]. Upon reviewing the

derivation to arrive at (2.61), it is relatively straightforward as to where these limitations

are inserted when computing acoustic ray travel times.

2.3.3 Dynamically Orthogonal Equations

Dynamically Orthogonal Equations is a methodology to model and evolve the dominant

uncertainty in a dynamical system [78, 79, 97, 25]. It consists of a stochastic expansion

to represent the stochastic dynamical system: the mean, an orthogonal basis (modes), and

their stochastic coefficients. Governing equations are derived for these three quantities from

the knowledge of the original stochastic dynamical systems differential equations. Without

loss of generality, a condition of dynamic orthogonality is imposed: the rate of change of the

modes is orthogonal to the modes themselves.
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We selected this methodology for implementations in Chapter 3 due to the following

advantages [78, 25]:

∙ The modes evolve with the governing differential equations which enables fewer modes

to represent the field of uncertainty.

∙ It is computationally efficient even when capturing non-Gaussian behavior.

∙ It is amenable to already developed non-Gaussian data-assimilation or Bayesian-inference

algorithms [80, 81, 58, 57].

The summary of the DO decomposition and dynamically-adaptive reduced-order stochas-

tic modeling that we provide below is adapted from ([70]) and the references cited therein.

Consider that the evolution of a dynamical system state variable 𝑥, governed by the following

PDE, commonly in space and time:

𝜕𝑥(𝑟, 𝑡)

𝜕𝑡
= ℒ(𝑥(𝑟, 𝑡)) . (2.61)

Now assume there is uncertainty in the above PDE and/or in its initial and boundary

conditions. As a result, the solution of the now stochastic PDE is represented as a stochastic

field 𝑋(𝑟, 𝑡; 𝜂) where the stochasticity is denoted by the random event variable 𝜂. We start

with the DO decomposition of the stochastic field:

𝑋(𝑟, 𝑡; 𝜂) = 𝑥(𝑟, 𝑡) +

𝑀∑︁
𝑖=1

�̃�𝑖(𝑟, 𝑡)𝜑𝑖(𝑡; 𝜂) , (2.62)

where 𝑥(𝑟, 𝑡) represents the mean field, �̃�(𝑟, 𝑡) are the eigenvectors or basis functions who’s

linear combinations with coefficients 𝜑(𝑡; 𝜂) represent the random components of the field.

From this point on, we will refer to �̃�(𝑟, 𝑡) and 𝜑(𝑡; 𝜂) as DO modes and DO coefficients,

respectively. It may be convenient to interpret 𝑟 as a spatial variable and 𝑡 as a time, as

indicated above. However, 𝑡 could be interpreted as a range or any other parameter by

which the field will "march".

In (2.62), all quantities are time dependent. Since the evolution in 𝑡 for both the DO

modes and coefficients creates redundancy, we can impose the condition that the stochastic
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subspace can only evolve in orthogonally to itself, without any loss of generality:

⟨𝜕�̃�𝑖(𝑟, 𝑡)
𝜕𝑡

,
𝜕�̃�𝑗(𝑟, 𝑡)

𝜕𝑡

⟩
= 0 . (2.63)

We now shift to Einstein notation where summations are implied. Inserting the DO decom-

position (2.62) into the governing stochastic PDE, we obtain:

𝜕𝑥(𝑟, 𝑡)

𝜕𝑡
+
𝑑𝜑𝑖(𝑡; 𝜂)

𝑑𝑡
�̃�𝑖(𝑟, 𝑡) + 𝜑𝑖(𝑡; 𝜂)

𝜕�̃�𝑖(𝑟, 𝑡)

𝜕𝑡
= ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂] . (2.64)

This PDE (2.64) is the starting point for the derivation of how the mean, DO Modes, and

DO coefficients will evolve with time. In this PDE, we can see that the stochastic DO

coefficients render the governing right-hand-side ℒ stochastic.

To derive the evolution of the mean field, we can simply take the expectation (E) of

(2.64) to obtain:
𝜕𝑥(𝑟, 𝑡)

𝜕𝑡
= E𝜂[ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂]] (2.65)

To derive the evolution of the DO coefficients, we start by taking the dot product of

(2.64) with the DO modes �̃�𝑗(𝑟, 𝑡):

⟨𝜕𝑥(𝑟, 𝑡)

𝜕𝑡
, �̃�𝑗(𝑟, 𝑡)

⟩
+
𝑑𝜑𝑖(𝑡; 𝜂)

𝑑𝑡

⟨
�̃�𝑖(𝑟, 𝑡), �̃�𝑗(𝑟, 𝑡)

⟩
+

𝜑𝑖(𝑡; 𝜂)
⟨𝜕�̃�𝑖(𝑟, 𝑡)

𝜕𝑡
, �̃�𝑗(𝑟, 𝑡)

⟩
=

⟨
ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂], �̃�𝑗(𝑟, 𝑡)

⟩ (2.66)

Due to (2.63), we know at all 𝑡,
⟨
�̃�𝑖(𝑟, 𝑡), �̃�𝑗(𝑟, 𝑡)

⟩
= 1 for all 𝑖 = 𝑗 and 0 otherwise. Hence,

we have: ⟨𝜕𝑥(𝑟, 𝑡)

𝜕𝑡
, �̃�𝑗(𝑟, 𝑡)

⟩
+
𝑑𝜑𝑖(𝑡; 𝜂)

𝑑𝑡
=

⟨
ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂], �̃�𝑗(𝑟, 𝑡)

⟩
. (2.67)

By also taking the dot product of (2.65) with the DO modes �̃�𝑗(𝑟, 𝑡), we can use:

⟨𝜕𝑥(𝑟, 𝑡)

𝜕𝑡
, �̃�𝑗(𝑟, 𝑡)

⟩
= E𝜂

[︁⟨
ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂], �̃�𝑗(𝑟, 𝑡)

⟩]︁
. (2.68)

Hence, we obtain:

𝑑𝜑𝑖(𝑡; 𝜂)

𝑑𝑡
=

⟨
ℒ(𝑋(𝑟, 𝑡; 𝜂)𝜂), �̃�𝑗(𝑟, 𝑡) − E𝜂

[︁⟨
ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂], �̃�𝑗(𝑟, 𝑡)

⟩]︁⟩
. (2.69)
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To derive the evolution of the DO modes, we begin by multiplying (2.64) by the DO

coefficients and taking the average over 𝜂. Then we use the fact that E𝜂[𝜑𝑗(𝑡; 𝜂)] = 0 to

obtain:
E𝜂

[︁𝑑𝜑𝑖(𝑡; 𝜂)

𝑑𝑡
𝜑𝑗(𝑡; 𝜂)

]︁
�̃�𝑖(𝑟, 𝑡) + E𝜂[𝜑𝑖(𝑡; 𝜂)𝜑𝑗(𝑡; 𝜂)]

𝜕�̃�(𝑟, 𝑡)

𝜕𝑡
=

E𝜂
[︁
ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂]𝜑𝑗(𝑡; 𝜂)

]︁
.

(2.70)

We can do the same to (2.69) to obtain:

E𝜂
[︁𝑑𝜑𝑖(𝑡; 𝜂)

𝑑𝑡
𝜑𝑗(𝑡; 𝜂)

]︁
= E𝜂

[︁⟨
ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂], �̃�𝑗(𝑟, 𝑡)

⟩
𝜑𝑗(𝑡; 𝜂)

]︁
. (2.71)

By inserting (2.71) into (2.70), and defining,

𝐶𝜑𝑖𝜑𝑗
= E𝜂[𝜑𝑖(𝑡; 𝜂)𝜑𝑗(𝑡; 𝜂)] , (2.72)

the PDE governing the evolution of the DO modes is:

𝜕�̃�𝑖(𝑟, 𝑡)

𝜕𝑡
=

[︂
E𝜂

[︁
ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂]𝜑𝑗(𝑡; 𝜂)

]︁
−

E𝜂
[︁⟨

ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂], �̃�𝑗(𝑟, 𝑡)
⟩
𝜑𝑗(𝑡; 𝜂)

]︁
�̃�𝑖(𝑟, 𝑡)

]︂
𝐶−1
𝜑𝑖𝜑𝑗

.

(2.73)

With the above governing DO differential equations, instead of solving a deterministic

or stochastic PDE for every stochastic realizations, we can take advantage of the dynamic

reduced order DO representation of the stochastic field as a mean plus a linear combination

of the DO modes multiplied by stochastic DO coefficients. Using equations (2.65), (2.69),

and (2.73), we can evaluate how each marches in time. Furthermore, depending on the

type of differential equation given as ℒ[𝑋(𝑟, 𝑡; 𝜂); 𝜂], there may be opportunity in further

computational savings as complicated non-linear PDEs may be reduced to solving ODEs

[70]. There are several examples where DO is successfully implemented including advection

and Lagrangian transport [24], for fluid and ocean flows [97, 88], optimal path planning

[85, 87], and recently in ocean acoustics through the parabolic equation [5, 3, 2].

2.4 Applications of Stochastic Ocean Acoustic Computation

When considering the applications of stochastic acoustic computation, there are two paradigms

that we will review. In both, the ultimate Bayesian goal would be to accurately predict the
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probability of the model state variables and/or parameters, given the uncertainties in the

inputs (probabilities of the initial, boundary or model formulation conditions) and the in

observations (sparse measurement errors, errors of representativeness). However, in many

cases, it is only the mean or single most probable state field or parameter values that are

estimated. One aim of the present thesis is to provide prior probabilities for acoustic ray pre-

dictions such that we can go beyond such single estimate focus and instead aim for Bayesian

data assimilation and posterior probabilities. Nonetheless, we first start by reviewing a com-

mon application that considers a set of given measurements and aims to estimate the single

model state variables or parameters that minimize the error between the actual measured

and the model predicted value, a problem known as Matched-Field Processing. We then

review existing results in coupled stochastic ocean physics and acoustic predictions and data

assimilation. The second application illsuttrates this Bayesian approach and showcase the

estimation of the posterior probability of state (bathymetry and sound speed fields), given

the prior joint probability, likelihood, and sparse measurements.

2.4.1 Matched-Field Processing for source Localization and Acoustic To-

mography

Match-Field Processing (MFP) as a concept has been utilized for a long time [10] with first

experiments conducted in the mid 19𝑡ℎ century [69]. Since then, various communities have

developed new algorithms and methods, with extensive applications to ocean acoustics and

array processing [8, 71, 92].

MFP is a parameter estimation technique for localizing a source in the ocean environ-

ment. It incorporates acoustic modeling with signal processing [7]. If we assume that we

sufficiently understand and model the physics of how sound will propagate, we can compute

multiple realizations of the environmental state, parameters, and source locations [94, 8].

Upon taking a measurement of the environment, and leveraging signal processing to account

for noise, we should be able to select an environment and source location combination that

matches the measured value (within a set tolerance). Similarly, if we were to collect tem-

porally and spatially varied measurements and then compute fields corresponding to the

measurements, the fields are likely to focus on a specific source location or environment

[95, 93, 71]. Matched-field processing has proven to be very useful in seismic, radar, and

underwater acoustics applications [74].
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2.4.2 Coupled stochastic ocean physics-acoustics uncertainty quantifica-

tion and data assimilation

In the past decades, physical oceanography and ocean acoustics modeling research have

become more and more interdisciplinary, for both fundamental dynamics and marine appli-

cations [76, 21, 19, 22]. The MIT-MSEAS ensemble uncertainty prediction modeling system

has been utilized extensively for realistic stochastic coupled ocean-acoustics predictions. Dy-

namical effects of the ocean environment on underwater sound propagation were forecast in

real time in several ocean regions, e.g., Dabob Bay [102], Mediterranean Sea [40], Middle

Atlantic Bight [13], and Mediterranean sea [99, 100]. In [53], the complex tidal-to-large-scale

dynamics of the northeastern Taiwan ocean region with strong internal tides and their effects

of Nx2-D sound propagation were studied and successfully compared to oceanographic and

acoustic transmission loss data. The results showed that with a realistic ensemble forecast-

ing and data assimilation scheme (Error Subspace Statistical Estimation, [e.g. 52, 42]), the

coupled ocean-acoustic modeling had predictive skill for both the ocean physics and acoustic

fields and their uncertainties.

Researchers proposed and implemented Polynomial Chaos Expansions as a means to pro-

vide a method of incorporating environmental uncertainty into the computation of acoustic

wave propagation. By expressing the variability with a spectral representation of a stochastic

process, the wavefields become an expansion of orthogonal random polynomials [15]. Simi-

lar to the methods instituted in this thesis, this methodology assumes that the uncertainty

inherent in SSP distribution propagates along with the acoustic wave field. Polynomial

chaos expansions coupled with acoustic computation (e.g. Parabolic Equations), where un-

certainty in the field is in terms of its statistical moments, has been effectively implemented

[27, 26].

Interdisciplinary physical-acoustical data assimilation, which combines observations with

fundamental dynamical models for field and parameter estimation has also become a power-

ful methodology [45, 49, 76, 20, 6]. For naval applications, end-to-end systems that couple

meteorology-physical oceanography-geoacoustics-ocean acoustics-bottom-noise-target-sonar

data and models, and that account and model the dominant uncertainties and their transfers

across the end-to-end system are most urgently needed [76]. This transfer of uncertainty

within the context of acoustic tracing is the subject of the present thesis. Once such non-
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Gaussian uncertainty quantification is for acoustic ray tracing is available, we would be able

to complete Bayesian data assimilation [31, 44, 50] for the joint inversion of acoustic rays and

ocean fields. We note that the goal of Bayesian estimation is to estimate the posterior prob-

ability of the state we estimate, best combining prior model predictions with observations.

For example, even though more observed information is provided, the actual uncertainty

(e.g. the variance) may increase in the Bayesian update. New approaches to such acoustic

Bayesian data assimilation are discussed next, within the context ocean floor mapping and

acoustic parabolic equations [5].

2.4.3 Bayesian Inference for Ocean Floor Mapping

Let P(A) be the probability of a specific model for the ocean sound speed environment, Let

B be a specific measurement of an acoustic signal. We can apply Bayes’ Theorem to update

our belief that our acoustic model accurately represents the real ocean acoustic environment:

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴) * 𝑃 (𝐴)

𝑃 (𝐵)
. (2.74)

Bayes rule is for example a powerful tool when selecting a model out of a distribution of

models. Not only can we identify the model with the best probability of being correct, but

we also have a measure of certainty in the selected model.

Mapping the ocean floor is a daunting task that has received a lot of attention in the past

decades [101]. Methods include using high resolution sonar systems, optics, or even satellite

imagery. These are accurate, but also come with a high price tag, especially if used to map

large portions of the ocean floor at high resolution. MIT Lincoln Laboratory is proposing

the use of a sparse-aperture-mapping-technique consisting of autonomous surface vehicles

that may leverage a Bayesian approach to identify bathymetric features [5].

Summarizing the approach, the system would compute transmission loss (TL) models

and corresponding probability distributions for the given uncertain variable ocean bottom

and its probability, accounting for the dominant uncertainties in the ocean sound-speed field

and its own probability distribution. Then after measuring the transmission loss field, the

Bayesian method first predicts the prior probability of the TL fields for the given proba-

bilities in the ocean, seabed, and bathymetry inputs. It then performs a Bayesian (non-

Gaussian) update to the joint probability density function, thereby providing a posterior
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joint probability and allowing to improve the knowledge of the ocean bottom features in the

Bayesian information sense. Efficient computation of the TL distribution requires accurate

deterministic and stochastic computing techniques. The method employed extends the de-

taerministic Parabolic Equation acoustic computation to DO stochastic computation. For a

more detailed description approach and results so far, We direct the reader to [5, 3, 2] and

references therein.
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Chapter 3

Dynamically Orthogonal Equations

for Stochastic Acoustic Rays

(DO-Ray): Methodology

3.1 Methods Overview

As discussed in the Thesis Overview, we combine Ray Tracing with Dynamically Orthogonal

Equations as a method for stochastic acoustic computation. We start by explaining the

intuition provided by Figure 3-1.

For the reduced order DO representation (in Einstein notation) of the stochastic ocean

physics fields, X and Ξ, we proceed as follows. We characterize each individual ocean

realization, essentially a sound speed profile field realization, as the sum of the mean of

the ocean fields with a linear combination of the number of modes determined necessary

to capture the variability in the fields multiplied by their respective stochastic coefficients

[86, 5].

Due to the stochastic sound-speed field, the underwater sound propagation field will also

a stochastic field. In our case, we can decompose the acoustic rays state variables again

using a DO decomposition, specifically:

x(𝑠; 𝜂) = x(𝑠) + x̃𝑖(𝑠)𝛽𝑖(𝑠; 𝜂) (3.1)

𝜉(𝑠; 𝜂) = 𝜉(𝑠) + 𝜉𝑖(𝑠)𝛾𝑖(𝑠; 𝜂) (3.2)

53



(a) Single Ocean Wavefront Realization at
step"𝑠."

(b) Multiple Ocean Wavefront Realizations at
step"𝑠."

Figure 3-1: (a) Depiction of how for a single ocean, the wavefront at a given step along all
of the rays "𝑠" can be represented by 2 vectors, each of length 2 × (#rays). (b) Depiction
at the same step along the rays "𝑠," for multiple ocean realizations, X and Ξ represent a
field of wavefronts for which we can obtain a reduced order representation.

The subscript "i" pertain to the DO modes and "𝜂" pertains to a particular ocean realization

event, and the summation over all "i" is implied.

For an alternate way of thinking about all of the x(𝑖) and 𝜉(𝑖), consider that for a given

number of steps along the rays "𝑠," they jointly describe the acoustic environment of an

ocean (𝑖). The ray tracing is not only a discrete representation of the wavefront; as a

Lagrangian approach, it also gives a skeleton structure for how acoustic wave energy will

propagate in a particular ocean realization (𝑖).

As discussed in Chapter 2, the most straight forward and simplest method to obtain

wavefront realizations is through a Monte Carlo implementation, hence solving for each ocean

realization in series or parallel. A DO-Ray methodology allows for computing these realiza-

tions using a reduced representation of the stochastic field by solving governing ODEs for the

stochastic mean (x(𝑠), 𝜉(𝑠)), DO modes (x̃𝑖(𝑠), 𝜉𝑖(𝑠)), and DO coefficients (𝛽𝑖(𝑠; 𝜂), 𝛾𝑖(𝑠; 𝜂)).

In what follows in Chapter 3, we first describe how we implement and validate a deter-

ministic ray methodology for two purposes:

∙ To provide a distribution of ray traces to analyze for the feasibility of a DO imple-

mentation and reduction, and
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∙ To allow for realization-to-realization comparisons between the deterministic rays com-

puted in Monte-Carlo fashion, and the stochastic realizations computed with the new

DO-Ray methodology.

We follow with a principled qualitative and quantitative assessment of the error in our

deterministic implementation.

We then evaluate the feasibility of a reduced-order representation for the acoustic field

for both ray position and orientation. This analysis confirms the feasibility of a DO-Ray

reduced representation, and provides insight for its implementation. We then derive the DO

equations for ray tracing, tying together the methods described in Chapter 2.2.2 and 2.3.3.

We also study some of the new computational intricacies that we introduce with a DO-Ray

implementation. We examine the opportunities for further reduction in our representation,

as well as some of the inherent challenges of the implementation. Lastly we analyze the

computational cost of our DO-Ray implementation.

3.2 Deterministic Ray Tracing Implementation

3.2.1 Direct Integration

As derived in Chapter 2.2.2, the governing equations for acoustic ray tracing are:

𝑑𝜉(𝑠)

𝑑𝑠
= − 1

𝑐(x)2
∇𝑐(x) (3.3)

𝑑x(𝑠)

𝑑𝑠
= 𝑐(x)𝜉(𝑠) . (3.4)

Equations (3.3) and (3.4) are a coupled system of first-order, linear ODEs and are amenable

to simple computational solvers. We are solving in a domain defined along a ray "𝑠." At first

glance, equations (3.3) and (3.4) appear to have a second independent variable x; however,

x is here merely the specific position of the modeled ray in the 𝑟𝑎𝑛𝑔𝑒(𝑥1) vs 𝑑𝑒𝑝𝑡ℎ(𝑥2)

plane. In [32], they refer to the methods we use to solve this system of equations as Direct

Integration. We solve the equations sequentially in explicit fashion, but still require initial

conditions.

The initial condition for x is self-evident as we consider a ray starting at x0 =
⟨︀
𝑥1 =

0, 𝑥2 = 𝑑𝑒𝑝𝑡ℎ
⟩︀

given an initial launch angle 𝜃0, in an acoustic medium described by 𝑐(x),

taking a step of length 𝑑𝑠. Since the direction a ray travels as it marches along its arc length
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is 𝑑x
𝑑𝑠 , we can rearrange equation (3.4) to establish the following initial conditions for an

individual ray’s components x and 𝜉:

𝜉0 =

⎡⎣ cos 𝜃0
𝑐(x0)

sin 𝜃0
𝑐(x0)

⎤⎦ ; x0 =

⎡⎣ 0

Source Depth

⎤⎦ . (3.5)

We can now implement an explicit numerical scheme to solve for the next step along the

ray. Using a Forward-Difference scheme, or Euler’s Method, we can an iterative algorithm

to solve for ray position in the water column:

x𝑛+1 = 𝑐(x𝑛)𝜉𝑛∆𝑠+ x𝑛 (3.6)

𝜉𝑛+1 = − 1

𝑐(x𝑛)2
∇𝑐(x𝑛)∆𝑠+ 𝜉𝑛 . (3.7)

Starting at the source with our initial launch angle, the ray takes a step (length = ∆𝑠) in

this direction to update it’s position. Simultaneously, we determine the effect of the sound

speed gradient over the same ∆𝑠 on the ray direction and update the ray direction at it’s

new position. We acknowledge that there are more accurate schemes than Euler’s method

though they will incur a great computational cost. Later, we evaluate the error associated

with this simple first-order scheme as well as a higher-order scheme for comparison.

SSPs are often obtained by direct measurement and presented in a tabular format, where

ample care is applied while interpolating between measurements [32]. We choose to represent

the depth dependent sound speed as a table where the rows correspond to the discretized

depths. We then apply a Shapiro filter [51, 54] to smooth the profile and discretize the SSP

to 1 m depth increments. When computing the sound speed at a specific depth, we can

apply piece-wise linear interpolation as opposed to a nearest neighbor approach.

3.2.2 Boundary Conditions

Hard Implementation

Because we have a system of first-order, linear ODEs, mathematically, we only require an

initial condition to solve the system: it allows us to march along the ray for as long as 𝑐(x)

is defined. To account for reflections off the surface or seabed, we must alter the algorithm.

The following method is described in more detail in [32].
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Figure 3-2: This example SSP is adapted from [32]. With only five (depth,sound-speed)
points, we are able to smooth the profile using a Shapiro filter.

Consider a ray that interfaces with the bottom as in Figure 3-3. The tangent vector of

Figure 3-3: Ray reflection off piece-wise linear boundary adapted from [32]. For a reflection,
the normal component of the ray changes sign, while the parallel component remaining the
same. Of note, on a horizontal surface, we can insert a reflection by reversing the sign of
the depth component of 𝜉𝑛.

the ray at this point is:

t𝐼𝑟𝑎𝑦 =
𝑑x(𝑠)

𝑑𝑠
= 𝑐(x)𝜉(𝑠) . (3.8)

Assume we can also represent the ocean bottom as piece-wise linear for which we can compute

the normal vector, n𝑏𝑑𝑟𝑦, and tangent vector, t𝑏𝑑𝑟𝑦. Therefor we can represent the incident

ray’s tangent vector as:

t𝐼𝑟𝑎𝑦 = 𝛼n𝑏𝑑𝑟𝑦 + 𝛽t𝑏𝑑𝑟𝑦 , (3.9)
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where:

𝛼 = t𝐼𝑟𝑎𝑦 · n𝑏𝑑𝑟𝑦 (3.10)

𝛽 = t𝐼𝑟𝑎𝑦 · t𝑏𝑑𝑟𝑦 . (3.11)

We can now represent a reflected ray as:

t𝑅𝑟𝑎𝑦 = −𝛼n𝑏𝑑𝑟𝑦 + 𝛽t𝑏𝑑𝑟𝑦 . (3.12)

We refer to this as a hard implementation. It will require an evaluation of bottom interfaces

and altering of the ray path external to the ODE solver.

Reflecting SSPs for Stochastic Rays on flat boundaries

Evaluating bottom interfaces and subsequent alteration of the ray path can be computa-

tionally expensive. It presents additional challenges in stochastic implementation. Since

the ray reflections are not governed as boundary conditions for the coupled ODE system,

we consider a method to account for reflections in post processing. Consider a ray that

Figure 3-4: Ray reflection off a flat sea surface. We insert the reflection by negating the
depth component of 𝜉𝑛.

interfaces with the ocean surface assumed to be flat. As shown in Figure 3-3, the switch in

the ray trajectory only requires switching the sign of the depth component of 𝜉 (𝜉2). The

result is illustrated in Figure 3-4.

Now, rather than evaluating for rays at or near the boundary, instead we allow the
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Figure 3-5: Two example oceans with a single ray in each ocean. The red corresponds
to a constant positive gradient SSP. The purple corresponds to an isovelocity profile. By
reflecting the domain, we no longer have to impose boundaries as we march along the ray.
The ray will propagate into a reflected medium were the effect of sound speed is reversed.
The ray is simply reflected back into the real domain (dashed) after it is computed.

algorithm to propagate the wave into a reflected ocean where it now behaves as a mirror

image to the actual propagation. Once the ray trajectory is computed, we can reflect the

images back into the real physical domain as illustrated in Figure 3-5.

This method is limited in that it requires a flat boundary, e.g. a flat bottom or flat sea

surface. However it will prove useful because it is computationally efficient in stochastic

implementations where hard implementations can hamper numerical efficiency.

3.3 Validation of Deterministic Ray Tracing Implementation

- Error Analysis

In order to analyze the error of our deterministic ray discretization and implementation,

ideally we would like to compare our results with an analytical expression for how the ray

will travel; however this does not exist for realistic ocean fields. Still, with the knowledge

that sound will bend toward the regions of lower sound speed and that how it bends is

dependent on the gradient of the sound speed profile, we can write the equation for the ray
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in a geometrical form [35]:

𝜎 = −1

𝑔

𝑐(x0)

cos 𝜃0

𝑔 =
𝑑𝑐(x)

𝑑𝑥2

(3.13)

where 𝜎 is the radius of curvature. For a constant-gradient, "𝑔", given the starting point

with initial angle of a particular ray, we can solve for its path analytically. We thus have

an analytical solution for a ray. Using different sound speed gradients, we can analyze

how well our finite difference implementation compares to the solution characterized as a

circle of radius 𝜎. By computing results for varying step-size, we can also observe expected

convergence rates

First we implement and analyze both a forward Euler scheme with expected first-order

error and a Runge-Kutta scheme with expected second-order error against the analytical

solution for an idealized constant gradient ocean. Due to the constant gradient, we also

have an analytical solution to compute sound-speed as a function of depth. As a result,

we observe the characteristic errors and convergences of both first-order forward Euler and

second-order Runge-Kutta implementations.

(a) Ray plots (b) Convergence Plots.

Figure 3-6: This test case is is an idealized ocean scenario. The sound speed profile has a
constant gradient of 3 m/s per m resulting in unrealistic sound-speeds closer to the surface
and the bottom. a) Ray paths evenly spaced between 15∘ above and below the horizontal
and computed using a step-size of 1 m. At this scale, the difference in the ray paths are
indistinguishable. (b) We observe the expected convergence rate as step size decreases
confirming the first-order convergence of forward Euler and second-order convergence of
Runge-Kutta.

Figure 3-6(a) shows that the rays appear indiscernible when observing the rays in their
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entirety hence the general paths are retained by both implementations as compared to

the analytical solutions. Figure 3-6(b) both confrims our expected order of convergence,

and shows that if an analytical solutions were not available, the extent to which we can

approximate the analytical solution given a step size. Since we confirmed the expected

convergence for the Runge-Kutta, we see that by selecting a step size two orders of magnitude

smaller than our implementation (∆𝑠 = 10−3 m vs ∆𝑠 = 1 m), the relative difference

between the analytical solution and the higher resolution is negligible. Therefore, we will

use the Runge-Kutta deterministic solver with the stepsize of ∆𝑠 = 10−3 m as our reference

to compute future assessment of the error.

We now insert additional computational error to the model by computing sound-speed

by piece-wise linear interpolation. We discretize the sound speed profile between the 1 m

increments use a function that computes sound speed by conducting piece-wise linear inter-

polation between depths.

Again, we observe the expected convergence for both the Runge-Kutta and forward

Euler implementations. Based on the results displayed in Figure 3-7, for a constant positive

gradient, we can assume that a step size less than 1 m for both implementations should

be acceptable. We have also validated that our method of computing the sound-speed and

sound-speed gradients do not introduce any appreciable error. We now can observe how

the implementations perform when there is no analytical solution by again comparing both

schemes of a similar step size (1 m) to that of a Runge-Kutta scheme using a step-size several

orders of magnitude smaller (10−3 m).

As a test case, we choose the SSP respresentation of the Balearic Sea listed in [32] where

a negative over a positive sound speed gradient results in rays ducting in the regions of

minimal sound speed (see Figure 3-2).

Due to the increased complexity of the Balearic Sea SSP, we observe that the error

associated with each implementation converges as expected with step size, with some small

oscillations. Based on these results, and previous implementations, we are confident that

this methodology produces reliable ray traces within an acceptable tolerance using first-order

forward Euler (avg. error < 0.25 m with ∆𝑠 = 1) or second-order Runge-Kutta (avg. error

< 5 * 10−3 m with ∆𝑠 = 1).
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(a) SSP (b) Ray plots

(c) Convergence Plots.

Figure 3-7: Using a less steep SSP gradient and extending the rays to 104 m: a) SSP (b)
Initial ray trajectories are evenly spaced between 15∘ above and below the horizontal. Runge-
Kutta and forward Euler Rays are computed using a step-size of 1 m with the reference ray
trace using Runge-Kutta and a step-size of 10−3 m. (c) Convergence rates are identical to
those observed when comparing to the analytical solution.

3.4 DO-Ray Feasibility and Implementation

Up to this point, we have discussed why stochastic acoustic computation is relevant, derived

governing equations in order to develop and validate a deterministic model for Monte-Carlo

comparison. We are hinging the ability of our algorithm’s computational accuracy on the

presumption that we can represent the variation of a field of ray traces, each corresponding

to a specific ocean realization, with a reduced order representation of DO modes and coef-

ficients. Such an approach and corresponding results have been shown to be very efficient

for acoustic parabolic PDEs [5, 3, 2].

However, for our novel DO-ray approach, before implementing the algorithm, it is useful

to make an empirical assessment as to whether it is possible and to what extent might we be

able to reduce the ray trace field using a dynamic reduced-order approach so as the DO-Ray
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(a) Balearic Sea SSP (b) Ray plots

(c) Convergence Plots.

Figure 3-8: Using the Balearic Sea SSP and plotting the rays to 104 m. a) Balearic Sea
SSP. (b) Initial ray trajectories are even spaced between 15∘ above and below the horizon-
tal. Runge-Kutta and forward Euler Rays are computed using a step-size of 1 m with the
reference ray trace using Runge-Kutta and a step-size of 10−3 m. (c) Convergence rates are
identical to those observed when comparing to the analytical solution.

ODEs. In the next few sections, we perform this empirical analysis on a distribution of

sound-speed profiles similar to those observed in the ocean environment along a single line

of latitude. We then evaluate the convergence of our reduced order model as we incorporate

more information in the form of additional DO modes.

3.4.1 Feasibility of DO-Ray Stochastic Computation

To evaluate the feasibility of a DO-Ray approach, we desire a distribution of realistic SSPs

that are independent, from which we will generate the associated ray traces using our deter-

ministic implementation. [65] provides an example of SSPs at 150∘W longitude (see Figure

3-9(a)). For most deep water acoustic propagation over a mesoscale distance, it is unlikely

to see the same variability in the SSP as we would if we were to consider an entire line of
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longitude. Typically the deeper depths would be relatively constant, even over the course of

a year, with most of the variability occurring in the upper 0 − 500m depths. By observing

the feasibility of reducing the acoustic fields (X and Ξ) with a maximum level of variability

over the entire water column, we can observe something akin to a "worse-case-scenario."

Hence, we can suppose that for less variable SSP distribution, we may be able to achieve

further reduction.

Using Figure 3-9(a) as an example, we created our SSPs by assuming uniform distri-

bution of sound-speed at prescribed depth bands. We further increased the variability by

using all permutations of the resultant sound-speed depth combinations. We obtain 5000

independent, uniformly distributed, SSPs loosely based on those in [65]. We then compute

the ray traces for every realization. Examples are provided on Figure 3-10.

Recall that we hope to obtain a reduced order representation of the X and Ξ states at

every step along the ray. We are able to assess the degree to which we can represent the

state variables with fewer modes by observing the decay of the singular values of the state

variables as we progress along the ray paths. At a step s:

∙ UΣV𝑇 = 𝑠𝑣𝑑({X − x} or {Ξ − 𝜉}), where Σ is a diagonal matrix of the singular

values decreasing in value from top left to bottom right.

We expect that as the ray length increases in distance, the relative positions and direction

of ray travel will have a greater variance, and therefore the number of modes required to

accurately represent the field should increase.

We performed the computations for every realization using 11, 101, and 1001 rays. The

rays in every realization are evenly discretized between −30∘ to +30∘. For 11, 101, and

1001 rays the maximum number of singular values or modes that can be used to describe

the stochastic field of 5000 oceans are 22, 202, and 2002 respectively.

Figures 3-11 and 3-12 illustrate the feasibility of representing our ray trace stochastic

fields using a reduced number of singular values or modes. After a few steps in all 5000

realizations, the stochastic field is not appreciably modified as displayed by the sharp drop

off in the log(Singular Value) plot for each singular value in the diagonal Σ matrix. We

observe that as the step size increases (i.e. longer rays) the complexity of the stochastic field

grows for both ray position and orientation. If we assume that our desire is to capture the

stochastic ray trace fields complexity at a ray length of 10 km, we can use these plots for
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(a) Example SSPs (b) SSP Sample Points

(c) Distribution of Simulated
SSPs at 150∘ Longitude

Figure 3-9: (a) Figure adapted from [65], serving as a starting point to generate simulated
SSPs. (b) Based on the previous figure, we created sample points at depths. By connecting
all permutations for each depth/sound-speed combinations, we can create 5,000 SSPs. (c)
Resultant SSP distribution with a mean SSP plotted for reference. The increase in variability
is seen in that some simulated SSPs will take the maximum sound speed at the surface with
a minimum sound speed at the 500m and vice versa.

qualitative insights.

First, we observe that the relative drop off in Singular Values becomes less steep as

we progress in step length. At a ray length 𝑂(102) m, the drop off gives insight as to

how much of a step length is required to achieve desired amount of variability during the
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Figure 3-10: Plots show 11 rays with initial angles of −30∘ to +30∘, range marched to 104m.
The difference in the SSPs results in significantly varied Ray Paths.

"initialization" of the DO-Ray implementation. This will be discussed later in this chapter.

Second, at 10 km, we find that the singular values drop several orders of magnitude over

a small fraction of the total number of singular values, indicating that we may be able to

represent the field fairly accurately using a reduced-rank representation for both position

and orientation; hence a reduced order representation is feasible.

In Figure 3-13, we see the extent to which we may achieve reduction in the number of

modes. For example, when the field is represented by 11 vs 101 rays, we see that a decrease

of two orders of magnitude for position (X) occurs at around 6 and 25 singular values ( 30%

and 20% of singular values), respectively. When we compare the number 101 vs 1001 Rays,

we see that the number of modes to see the same decrease of two orders of magnitude is

around 20 and 100 singular values ( 20% and 5% respectively). Hence, we are able to gain a

greater percent reduction when we represent the realizations with a larger number of rays.

We only observe the relative magnitudes of the singular values as explicit magnitudes

of the singular values do not necessarily provide physical insights such as how much the

reduction affects the positional error. Knowing this, the first of our qualitative observations

serves as a guideline for our DO-ray initialization and may have to be adjusted empirically.

The amount of variability in the ray traces is highly dependent on the variability on the

SSP between the different ocean realizations at the source position.

For the second of these qualitative assessments, it is important to make a correspondence

to the number of modes used to represent the field and the expected error we can expect for

the position and orientation error. In the next section, we observe the convergence of the
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(a) 10 steps X - 11 Rays (b) 10 steps X - 101 Rays (c) 10 steps X - 1001 Rays

(d) 100 Steps X - 11 Rays (e) 100 Steps X - 101 Rays (f) 100 steps X - 1001 Rays

(g) 1000 Steps X - 11 Rays (h) 1000 Steps X - 101 Rays (i) 1000 steps X - 1001 Rays

(j) 10000 Steps X - 11 Rays (k) 10000 Steps X - 101 Rays (l) 10000 steps X - 1001 Rays

Figure 3-11: Singular Values plotted for (X − x) marched to the specified number of 1 m
steps for 11, 101, and 1001 Ray stochastic fields. As the fields propagate, more singular
values or modes will be required to accurately capture the variability in ray position.
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(a) 10 steps Ξ - 11 Rays (b) 10 steps Ξ - 101 Rays (c) 10 steps Ξ - 1001 Rays

(d) 100 Steps Ξ - 11 Rays (e) 100 Steps Ξ - 101 Rays (f) 100 steps Ξ - 1001 Rays

(g) 1000 Steps Ξ - 11 Rays (h) 1000 Steps Ξ - 101 Rays (i) 1000 steps Ξ - 1001 Rays

(j) 10000 Steps Ξ - 11 Rays (k) 10000 Steps Ξ - 101 Rays (l) 10000 steps Ξ - 1001 Rays

Figure 3-12: Singular Values plotted for (Ξ − 𝜉) marched to the specified number of 1 m
steps for both 11, 101, and 1001 Ray stochastic realization fields. As the field propagates,
more singular values or modes will be required to accurately capture the variability in ray
orientation.
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(a) 10000 steps X - 11 Rays (b) 10000 steps Ξ - 11 Rays

(c) 10000 steps X - 101 Rays (d) 10000 steps Ξ - 101 Rays

(e) 10000 steps X - 1001 Rays (f) 10000 steps Ξ - 1001 Rays

Figure 3-13: Singular Values plotted for (X− x) and (Ξ− 𝜉) marched to 104 m for 11, 101,
and 1001 Ray stochastic fields. All x-axis are 0 to 50 modes to better allow for for comparing
relative drop-off vs. number of modes.
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errors as we increase the number of modes for both position and orientation.

3.4.2 Expected Convergence with Number of Mode

Based on the previous section’s results, we know it is feasible to use a reduced rank repre-

sentation to accurately represents the ray trace field, though we have yet to show the extent.

We now aim to show how well the stochastic field is represented with a reduced number of

singular values and vectors. In other words and for example, when we reduce the number

of modes, what is the cost in accuracy at a range of 104 m? Using the same realizations

from the previous section, we subsequently computed a truncated SVD for all reduced order

representations at 104 m.

In Figure 3-14 we confirm the qualitative assessments from the previous section with

some additional insight. We can achieve an average positional error across all ray and

realizations of less than 10 m using 20 of 2002 singular modes/values (1001 Rays); however

after the initial rate of convergence, we see that we need to add modes at a higher rate

to achieve the same increase in accuracy. Still, these plots confirm that it is feasible to

use reduced-order representations for X by using only approximately 50%, 30%, and 7% of

the available modes to represent the fields of 11, 101, and 1001 rays respectively with an

expected average error of approximately 1 m.

After performing similar analysis on Ξ, we see similar results. Figure 3-15 shows that

with a similar number of modes, the error we observe in our orientation, direction of the ray

relative to the horizontal, is only a small fraction of a degree. Based on these results, we

can represent the orientation for 1001 rays over a field of 5000 oceans with only 80 modes

and expect an error of less than 0.2∘.

We also investigate the contribution of the orientation error to the position error over

each step. Figure 3-16 is a geometrical representation of how an error in the orientation may

result in an error in the range and depth position. For a step size of 1 m, and by making

use of the trigonometric identities and the small angle approximation we have:

sin (𝜃 + 𝜃𝑒) = sin 𝜃 cos 𝜃𝑒 + cos 𝜃 sin 𝜃𝑒

≈ 𝑑+ 𝑟𝜃𝑒 = 𝑑+ 𝑑𝑒

𝑟𝜃𝑒 ≈ 𝑑𝑒

(3.14)
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(a) 10000 steps X - 11 Rays (b) 10000 steps X - 11 Rays

(c) 10000 steps X - 101 Rays (d) 10000 steps X - 101 Rays

(e) 10000 steps X - 1001 Rays (f) 10000 steps X - 1001 Rays

Figure 3-14: Plots on the left for 11, 101, and 1001 Rays show how the positional error
converges as we increase the number of modes. Sloped lines are provided to provide relative
orders of convergence. The plots on the right show how the error changes for individual rays
with dotted lines to indicate the average errors across all rays.
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(a) 10000 steps Ξ - 11 Rays (b) 10000 steps Ξ - 11 Rays

(c) 10000 steps Ξ - 101 Rays (d) 10000 steps Ξ - 101 Rays

(e) 10000 steps Ξ - 1001 Rays (f) 10000 steps Ξ - 1001 Rays

Figure 3-15: Plots on the left for 11, 101, and 1001 Rays show how the orientation error
converges as we increase the number of modes. The plots on the right show how the error
changes for individual rays with dotted lines to indicate the average errors across all rays.
While the reduced representation is on the Ξ field, we converted the y-axis to degrees in
order to give a physical interpretation of the expected error vs the number of modes used.
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We also have:

cos (𝜃 + 𝜃𝑒) = cos 𝜃 cos 𝜃𝑒 + sin 𝜃 sin 𝜃𝑒

≈ 𝑟 + 𝑑𝜃𝑒 = 𝑟 + 𝑟𝑒

𝑑𝜃𝑒 ≈ 𝑟𝑒

(3.15)

Therefor the magnitude of the positional error induce by our small orientation error in one

step can be approximated as:

|x𝑒| ≈
√︀

(𝑟𝜃𝑒)2 + (𝑑𝜃𝑒)2 = 𝜃𝑒 (in radians) (3.16)

Therefore we see that a 0.2∘ orientation error at a given step corresponds to a 3.5mm error

in position on the following step for a 1m step size.

Figure 3-16: Geometric representation of a ray path and the error introduced by the error
in orientation.

In summary, we computed ray traces for 5000 very different ocean environments. By

observing the decay of the singular values as we increased the ray lengths, we see that at

each step we can use a reduced-rank representation to predict the field of stochastic ray

traces. We then computed physical values for orientation and range error to see how they

decay as we incorporate additional modes. By doing this we not only confirm the feasibility

of a reduced-order representation, but also gain intuition of how many steps are needed for

initialization, as well as the number of singular values needed for an accurate representation

of the field.
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3.5 Dynamically Orthogonal Field Equations (DO) Derivation

Now that our assumptions regarding the opportunity for reduction are supported in the

previous section, we derive the stochastic DO-Ray differential equations. The derivations

may be burdensome with notations. For simplicity, when annotating state variables or ocean

realizations, we do not always include the dependent variable. To understand the derivation

it is useful to introduce the following definitions and concept:

∙ When we use the term field (X and Ξ), we are considering multiple realizations,

typically O(103 to 104) and possibly much more, with each realization characterized

by an x and 𝜉 pair forming a column of the matrices X and Ξ. After subtracting the

mean of all realizations we perform a singular value decomposition to obtain the DO

modes and coefficients.

– For example, UΣV𝑇 = 𝑠𝑣𝑑(X−E𝜂[X]), where the DO modes x̃ are the columns

of U, and the DO coefficients, corresponding to a particular realization, are the

rows of ΣV𝑇 .

∙ Realizations of stochastic state variables 𝜉(𝑠; 𝜂) and x(𝑠; 𝜂) dependent on "𝑠" and

correspond to a particular ocean realization. They also have their stochastic represen-

tations for a particular realization "𝜂":

𝜉(𝑠; 𝜂) ≡ 𝜉 = 𝜉 + 𝜉𝑖𝛾𝑖

x(𝑠; 𝜂) ≡ x = x + x̃𝑖𝛽𝑖

∙ The stochastic means and DO modes are only a function of "𝑠":

𝜉𝑖(𝑠) ≡ 𝜉𝑖 and 𝜉𝑖(𝑠) ≡ 𝜉𝑖

x(𝑠) ≡ x and x̃𝑖(𝑠) ≡ x̃𝑖

∙ The DO coefficients are dependent on "𝜂" and correspond to a particular ocean real-

ization:

𝛾𝑖(𝑠; 𝜂) ≡ 𝛾𝑖

𝛽𝑖(𝑠; 𝜂) ≡ 𝛽𝑖

∙ The sound speed along a stochastic ray depends on position x(𝑠; 𝜂) and correspond to

a particular ocean:
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𝑐(x(𝑠; 𝜂); 𝜂) ≡ 𝑐(x)

3.5.1 Evolution of the Stochastic Mean
(︀𝑑𝜉(𝑠)

𝑑𝑠
,𝑑x(𝑠)

𝑑𝑠

)︀
We begin with the stochastic versions of (3.3) and (3.4). Inserting the decomposition (3.1)

and (3.2) respectively, we obtain:

𝑑

𝑑𝑠
(𝜉 + 𝜉𝑖𝛾𝑖) = − 1

𝑐(x)2
∇𝑐(x)

𝑑

𝑑𝑠
(x + x̃𝑖𝛽𝑖) = 𝑐(x)𝜉

(3.17)

We then take the expectation (E𝜂) of (3.17) over all ocean realizations:

𝑑

𝑑𝑠
E𝜂[𝜉] +

𝑑E𝜂[𝛾𝑖]

𝑑𝑠
𝜉𝑖 + E𝜂[𝛾𝑖]

𝑑𝜉𝑖
𝑑𝑠

= E𝜂

[︂
− 1

𝑐(x)2
∇𝑐(x)

]︂
𝑑

𝑑𝑠
E𝜂[x] +

𝑑E𝜂[𝛽𝑖]

𝑑𝑠
x̃𝑖 + E𝜂[𝛽𝑖]

𝑑x̃𝑖

𝑑𝑠
= E𝜂

[︂
𝑐(x)𝜉

]︂ (3.18)

Applying the fact that E𝜂[𝛾𝑖(𝑠; 𝜂)] = 0 and E𝜂[𝛽𝑖(𝑠; 𝜂)] = 0 by definition, we are left with:

𝑑𝜉

𝑑𝑠
= E𝜂

[︂
− 1

𝑐(x)2
∇𝑐(x)

]︂
𝑑x
𝑑𝑠

= E𝜂

[︂
𝑐(x)𝜉

]︂ (3.19)

to describe how the stochastic mean of the acoustic ray trace field propagates.

3.5.2 Evolution of the DO Coefficients
(︀
𝑑𝛾𝑖(𝑠;𝜂)

𝑑𝑠
, 𝑑𝛽𝑖(𝑠;𝜂)

𝑑𝑠

)︀
Starting again with (3.17), we subtract (3.19) and take the projection onto 𝜉𝑗(𝑠) and x̃𝑗(𝑠),

respectively, to obtain:

𝑑𝛾𝑖
𝑑𝑠

⟨𝜉𝑖, 𝜉𝑗⟩ + 𝛾𝑖

⟨
𝑑𝜉𝑖
𝑑𝑠
, 𝜉𝑗

⟩
=

⟨
− 1

𝑐(x)2
∇𝑐(x) − E𝜂

[︂
− 1

𝑐(x)2
∇𝑐(x)

]︂
, 𝜉𝑗

⟩
𝑑𝛽𝑖
𝑑𝑠

⟨x̃𝑖, x̃𝑗⟩ + 𝛽𝑖

⟨
𝑑x̃𝑖

𝑑𝑠
, x̃𝑗

⟩
=

⟨
𝑐(x)𝜉 − E𝜂

[︂
𝑐(x)𝜉

]︂
, x̃𝑗

⟩ (3.20)
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Applying the DO condition described in Chapter 2, we obtain:

𝑑𝛾𝑗
𝑑𝑠

=

⟨
− 1

𝑐(x)2
∇𝑐(x) − E𝜂

[︂
− 1

𝑐(x)2
∇𝑐(x)

]︂
, 𝜉𝑗

⟩
𝑑𝛽𝑗
𝑑𝑠

=

⟨
𝑐(x)𝜉 − E𝜂

[︂
𝑐(x)𝜉

]︂
, x̃𝑗

⟩ (3.21)

to describe how the DO coefficients evolve with each step "𝑠".

3.5.3 Evolution of the DO Modes
(︀𝑑𝜉𝑖(𝑠)

𝑑𝑠
, 𝑑x̃𝑖(𝑠)

𝑑𝑠

)︀
Starting again with (3.17), we project onto the stochastic space by multiplying with the

stochastic DO coefficients (𝛾𝑘,𝛽𝑘) and take the expectation to obtain:

𝑑𝜉

𝑑𝑠
E𝜂[𝛾𝑘] + E𝜂

[︂
𝑑[𝛾𝑖]

𝑑𝑠
𝛾𝑘

]︂
𝜉𝑖 + E𝜂[𝛾𝑖𝛾𝑘]

𝑑𝜉𝑖
𝑑𝑠

= E𝜂

[︂
− 𝛾𝑘
𝑐(x)2

∇𝑐(x)

]︂
𝑑x
𝑑𝑠

E𝜂[𝛽𝑘] + E𝜂

[︂
𝑑[𝛽𝑖]

𝑑𝑠
𝛽𝑘

]︂
x̃𝑖 + E𝜂[𝛽𝑖𝛽𝑘]

𝑑x̃𝑖

𝑑𝑠
= E𝜂

[︂
𝑐(x)𝜉𝛽𝑘

]︂ (3.22)

We can also multiply (3.21) by the stochastic DO coefficients (𝛾𝑘,𝛽𝑘) and take the expecta-

tion to obtain a representation of the second terms in (3.22):

E𝜂

[︂
𝑑[𝛾𝑖]

𝑑𝑠
𝛾𝑘

]︂
= E𝜂

[︂⟨
− 1

𝑐(x)2
∇𝑐(x) − E𝜂

[︂
− 1

𝑐(x)2
∇𝑐(x)

]︂
, 𝜉𝑗

⟩
𝛾𝑘

]︂
E𝜂

[︂
𝑑[𝛽𝑖]

𝑑𝑠
𝛽𝑘

]︂
= E𝜂

[︂⟨
𝑐(x)𝜉 − E𝜂

[︂
𝑐(x)𝜉

]︂
, x̃𝑗

⟩
𝛽𝑘

]︂ (3.23)

After substituting (3.23) into (3.22) and rearranging to solve for the DO modes, we arrive

at:

𝑑𝜉𝑖
𝑑𝑠

=

[︃
E𝜂

[︂
− 𝛾𝑘
𝑐(x)2

∇𝑐(x)

]︂
− E𝜂

[︂⟨
− 1

𝑐(x)2
∇𝑐(x) − E𝜂

[︂
− 1

𝑐(x)2
∇𝑐(x)

]︂
, 𝜉𝑗

⟩
𝛾𝑘

]︂
𝜉𝑖

]︃{︃
E𝜂[𝛾𝑖𝛾𝑘]

}︃−1

𝑑x̃𝑖

𝑑𝑠
=

[︃
E𝜂

[︂
𝑐(x)𝜉𝛽𝑘

]︂
− E𝜂

[︂⟨
𝑐(x)𝜉 − E𝜂

[︂
𝑐(x)𝜉

]︂
, x̃𝑗

⟩
𝛽𝑘

]︂
x̃𝑖

]︃{︃
E𝜂[𝛽𝑖𝛽𝑘]

}︃−1
(3.24)

to describe how the the DO modes of the stochastic acoustic ray trace field propagate with

each step "𝑠".
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3.6 Stochastic DO-Ray Algorithms and Reduced-Order Rep-

resentations

In this section we first write the previously derived DO equations in a realization matrix

form. Looking at these matrices, we can see where we are introducing the reduced-order

representation of our stochastic field.

3.6.1 Matrix Representations

Prior to computing and evolving the stochastic field consisting of H realizations, we select

two computational parameters from which we will construct a reduced representation:

∙ the number of rays, 𝑅, used to form the ray trace,

∙ the number of DO modes, 𝑀 , necessary to capture the variation between the 𝐻 (#

of oceans) different traces.

Here we define the matrices used in the matrix notation of the DO-Ray equations and specify

the dimensions of each:

∙ X is comprised of all ray positions for all realizations at a particular range-step 𝑠. X𝑟

and X𝑑 correspond to range and depth components respectively. Both X𝑟 and X𝑑

are 𝑅 × 𝐻 size matrices. Similarly Ξ is comprised of all 𝜉 for all realizations at a

particular step along the ray. Ξ𝑟 and Ξ𝑑 correspond to range and depth components

respectively. Both Ξ𝑟 and Ξ𝑑 are a𝑅×𝐻 size matrices.

∙ Both X and Ξ can be decomposed into their respective means, DO modes, and DO

coefficients for a particular range-step "𝑠".

X𝑟,𝑑 = x𝑟,𝑑 + X̃𝑟,𝑑𝐵

Ξ𝑟,𝑑 = 𝜉𝑟,𝑑 + Ξ̃𝑟,𝑑Γ

∙ The range and depth components of 𝜉𝑟,𝑑 and x𝑟,𝑑 are vectors of length R.

∙ DO mode matrices: 𝑑𝑖𝑚(X̃𝑟,𝑑) = 𝑅×𝑀 ; 𝑑𝑖𝑚(Ξ̃𝑟,𝑑) = 𝑅×𝑀 .

∙ DO coefficient matrices: 𝑑𝑖𝑚(𝐵) = 𝑑𝑖𝑚(Γ) = 𝑀 ×𝐻

∙ C = 𝑐𝜂=1:𝐻(X); 𝑑𝑖𝑚(C) = 𝑅×𝐻.
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∙ C𝑥 = 1
𝑐2𝜂=1:𝐻(X)

; 𝑑𝑖𝑚(C𝑥) = 𝑅×𝐻.

∙ ∇𝑟,𝑑C = ∇𝑟,𝑑𝐶(X), where ∇𝑟 and ∇𝑑 represent the range and depth components of

the gradients respectively. 𝑑𝑖𝑚(∇𝑟,𝑑C) = 𝑅×𝐻

Evolution of the DO Means

From Equation (3.19) we can put the equation in matrix form:

𝑑x𝑟,𝑑

𝑑𝑠
= E𝜂

[︂
C. * (𝜉𝑟,𝑑 + Ξ̃𝑟,𝑑Γ)

]︂
(3.25)

and

𝑑𝜉𝑟,𝑑
𝑑𝑠

= E𝜂

[︂
C. * ∇𝑟,𝑑C

]︂
(3.26)

Evolution of the DO Coefficients

From Equation (3.21):

𝑑

𝑑𝑠
[𝐵] = X̃

𝑇
𝑟

(︀
C. * 𝜉𝑟 + C. * (Ξ̃𝑟Γ) − 𝑑x𝑟

𝑑𝑠

)︀
+ X̃

𝑇
𝑑

(︀
C. * 𝜉𝑑 + C. * (Ξ̃𝑑Γ) − 𝑑x𝑑

𝑑𝑠

)︀ (3.27)

and

𝑑

𝑑𝑠
[Γ] = Ξ̃

𝑇
𝑟

(︀
− E𝜂

[︀
C𝑥. * ∇𝑟C

]︀
− C𝑥. * ∇𝑟C

)︀
+ Ξ̃

𝑇
𝑟

(︀
− E𝜂

[︀
C𝑥. * ∇𝑑C

]︀
− C𝑥. * ∇𝑑C

)︀ (3.28)

Evolution of the DO Modes

From Equation (3.24):

𝑑X̃𝑟

𝑑𝑠
=

[︂
1

𝜂
C𝑥. * (𝜉𝑟 + Ξ̃𝑟Γ)𝐵𝑇 − X̃𝑟

(︂
1

𝜂

(︂
𝑑𝐵

𝑑𝑠
𝐵𝑇

)︂)︂]︂
𝐶𝑜𝑣

{︀
𝐵𝑇

}︀−1

𝑑X̃𝑑

𝑑𝑠
=

[︂
1

𝜂
C𝑥. * (𝜉𝑑 + Ξ̃𝑑Γ)𝐵𝑇 − X̃𝑑

(︂
1

𝜂

(︂
𝑑𝐵

𝑑𝑠
𝐵𝑇

)︂)︂]︂
𝐶𝑜𝑣

{︀
𝐵𝑇

}︀−1

(3.29)
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and

𝑑Ξ̃𝑟

𝑑𝑠
=

[︂
1

𝐻

(︀
(C𝑥. * ∇𝑟C)Γ𝑇

)︀
− Ξ̃𝑟

(︂
1

𝐻

(︂
𝑑Γ

𝑑𝑠
Γ𝑇

)︂)︂]︂
𝐶𝑜𝑣

{︀
Γ𝑇

}︀−1

𝑑Ξ̃𝑑

𝑑𝑠
=

[︂
1

𝐻

(︀
(C𝑥. * ∇𝑑C)Γ𝑇

)︀
− Ξ̃𝑑

(︂
1

𝐻

(︂
𝑑Γ

𝑑𝑠
Γ𝑇

)︂)︂]︂
𝐶𝑜𝑣

{︀
Γ𝑇

}︀−1

(3.30)

3.6.2 Reduced Order Representation of the Nonlinear Stochastic SSP

along Stochastic Acoustic Rays

Now that we see the discrete matrix-form DO-Ray evolution equations, it is apparent that

though we have reduced representations of the acoustic field, the computational cost can

be higher with a DO-Ray computation as compared to a Monte Carlo approach. Hence, we

now delve into why our present DO-Ray implementation can be less efficient than a direct

Monte-Carlo scheme. Later, we provide ideas on how this can be remedied.

At each step in the evolution, we presently compute the sound-speed for each individual

ray, for all ocean realizations, at every step (𝐻 × 𝑅 computations). This inefficiency exists

for both Monte-Carlo and DO implementations; however, where we gained efficiency in

reducing our representation of the stochastic field, in the above implementation, we lose

some efficiency in having to reconstitute all realizations in order to evaluate the sound speeds

for the next step along each advancing ray. It is important to understand why we cannot

obtain the additional reduction in the sound-speed distribution with the above equations,

in order to provide guidance on how one may be able to increase efficiency in future work.

Consider an arbitrary distribution of SSP measurements for which we can form functions

𝑐1:𝐻(x) similarly to how we form the sound speed profiles earlier in this chapter. As we

decompose the stochastic fields of the acoustic ray state variables, we could decompose 𝑐

into its mean, DO modes and coefficients:

𝑐(x(𝑠; 𝜂); 𝜂) = 𝑐(x(𝑠; 𝜂)) + 𝑐𝑗(x(𝑠; 𝜂))𝛼𝑗(𝜂) (3.31)

where our stochastic location field x along a stochastic ray is both a function of the step

along the ray and of the ocean realization. Presently, the sound speed profiles are frozen in

time and are only dependent on the realization selected and spatial location. Inserting the
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stochastic representations of x in (3.31), we have:

𝑐(x + x̃𝑖𝛽𝑖(𝜂); 𝜂) = 𝑐(x + x̃𝑖𝛽𝑖(𝜂)) + 𝑐𝑗(x + x̃𝑖𝛽𝑖(𝜂))𝛼𝑗(𝜂) . (3.32)

To exemplify the computational issues involved with the nonlinear evaluation of the

stochastic sound-speed along stochastic rays, we discuss the evolution of the stochastic mean

(3.19) with the added reduced order in 𝑐1:𝐻(x). We start by inserting (3.32) into (3.17) and

take the expectations over all ocean realizations to obtain the revised RHS of (3.18) and

(3.19):

𝐿𝐻𝑆𝜉 = E𝜂

[︂
− 1(︂

𝑐(x + x̃𝑖𝛽𝑖(𝜂)) + 𝑐𝑗(x + x̃𝑖𝛽𝑖(𝜂))𝛼𝑗(𝜂)

)︂2∇
(︂
𝑐(x + x̃𝑖𝛽𝑖(𝜂)) + 𝑐𝑗(x + x̃𝑖𝛽𝑖(𝜂))𝛼𝑗(𝜂)

)︂]︂

𝐿𝐻𝑆x = E𝜂

[︂(︂
𝑐(x + x̃𝑖𝛽𝑖(𝜂)) + 𝑐𝑗(x + x̃𝑖𝛽𝑖(𝜂))𝛼𝑗(𝜂)

)︂
𝜉(𝜂)

]︂ (3.33)

Consider the latter equation of (3.33). Without going into the details of computing the

RHS, we need to compute E𝜂
[︀(︀
𝑐(x + x̃𝑖𝛽𝑖(𝜂)) + 𝑐𝑗(x + x̃𝑖𝛽𝑖(𝜂))𝛼𝑗(𝜂)

)︀
𝜉
]︀

or more simply

E𝜂[𝑐(x(𝑠; 𝜂); 𝜂)𝜉]. Unless we have an equation that describes the functional relationship

between the position and the sound speed along a particular ray, there is no analytical way

to compute this expectation over all realizations. There are nonetheless a few approximations

that we discuss next, with an increasing level of stochastic accuracy.

Local sound-speed mean approximation. First, we could make an approximation

for the stochastic ray traces, with the most simple being x + x̃𝑖𝛽𝑖 ≈ x. With this approxi-

mation we arrive at:

𝑐(x(𝑠; 𝜂); 𝜂) ≈ 𝑐(x) + 𝑐𝑗(x)𝛼𝑗(𝜂) (3.34)

and thus E𝜂[𝑐(x(𝑠; 𝜂); 𝜂)] ≈ E𝜂
[︀
𝑐(x) + 𝑐𝑗(x)𝛼𝑗(𝜂)

]︀
. This zeroth-order stochastic approx-

imation is similar to the assumption we made with the example application of EOFs in

tomography in that we are assuming that perturbation in the rays across all realizations are

relatively small. Therefore the sound-speed for all realizations is approximated as the sound

speed for the mean profile plus a DO decomposition. Consider a distribution of constant

positive sound speed profiles for which we have computed the mean profile. When consider-

ing the ray paths after some significant number of range steps the mean ray position may be

a decent approximation and the sound-speed gradient exact as it is constant and positive.
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Let’s discuss this zeroth-order approximation of the sound-speed and imagine the situ-

ation where the sound speed has a probability distribution of constant both positive and

negative sound speed gradients. Even though we have a better approximation to account

for the ray path error in the different realizations, the effect of the sound speed gradients

on the ray path, where the mean is no longer an accurate approximation, will result in

inaccurate representations of how the ray will bend. Using the mean sound-speed gradient

as an approximation would result in an altered ray path as the gradients may have opposite

signs.

It is feasible to construct scenarios under which this methodology could make the approx-

imations above and reduce the computational cost of the DO-Ray methodology; however

these could be overly specific and therefore are not considered in this thesis.

This illustrates an important point when considering the DO-Ray computational method

based on the mean ocean only. The mean ray propagation in a non-Gaussian distribution

could be nonphysical and is unlikely to approximate all of the other realizations. We also note

that propagation and dynamics of the DO modes are only basis functions that describe the

most variance and do not always correspond to specific acoustic physical process. They are

intermediate computational quantities from which physical realizations can be reconstructed

by linear combinations of the DO modes multiplied by the DO coefficients.

Local sound-speed Taylor-Series approximation. Second, if we were to deem that

the error in ray position after the requisite number of steps would result in too large an error

in sound-speed computation, we could consider consider first-order Taylor series expansion

of the sound-speed functions around x to better account for the difference in ray position:

𝑐(x) ≈ 𝑐(x) + ∇𝑐(x)(x − x) (3.35)

We can then apply such a first-order relation to the mean sound speed function and the DO

modes function. This appears promising in that we have a representation of the x−x term:

x𝑖𝛽𝑖. Hence, applying a first-order Taylor series expansion to both he sound-speed mean

and the DO modes, our first-order stochastic approximation is:

𝑐(x) ≈
(︀
𝑐(x) + ∇𝑐(x)x̃𝑖𝛽𝑖

)︀
+
(︀
𝑐𝑗(x)𝛼𝑗 + ∇𝑐𝑗(x)𝛼𝑗x̃𝑖𝛽𝑖

)︀
(3.36)

This is the first-order stochastic approximation. Similar relations can be derived for the
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other terms in the DO equations. Higher-order Taylor series can also be considered for

additional accuracy in the stochastic space, but the computational costs of using such ap-

proximation quickly become large. In general, first-order and sometimes higher-order Taylor

approximations have been very useful and efficient for stochastic DO energy-optimal and

time-optimal path planning [84, 83, 82, 85, 87] as well as in stochastic biogeochemical mod-

eling and inference [29]. We can expect that they would be also very useful for stochastic

DO rays and this should be investigated.

Local sound-speed function. A third additional way to achieve the desired reduction

to through other stochastic function approximation. However, it also results in a significant

loss of generality and assumes knowledge of how the sound speed changes as a function

of position on the ray as opposed to depth or position in the water column. Since the

crux of the problem in evaluating the nonlinear 𝑐(x(𝑠; 𝜂); 𝜂) is not knowing the analytical

functional relationship and a simple (linear) representation, we could create an accurate but

easy-to-deal with functional relationship with a stochastic dependency.

For instance, consider 𝑑𝑐(𝑠)
𝑑𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, but assume the best approximation of the

stochastic slope of the sound speed is to be determined (𝑚 = 𝑚+𝛼𝑗). Instead of representing

the stochastic sound-speed as 𝑐(x; 𝜂) = 𝑐(x) + 𝑐𝑗(x)𝛼𝑗(𝜂), we could represent it as:

𝑐(x + x̃𝑖𝛽𝑖; 𝜂) = (𝑚+ 𝛼𝑗) * (x + x̃𝑖𝛽𝑖) + 𝑐0 (3.37)

Thus, considering the mean as an example,

E𝜂[𝑐(x(𝑠; 𝜂); 𝜂)] = E𝜂[(𝑚+ 𝛼𝑗) * (x + x̃𝑖𝛽𝑖) + 𝑐0] = 𝑚x + x̃E𝜂[𝛼𝑗𝛽𝑖] (3.38)

The parameters in these equations could be optimized locally by least-squares or in the sense

of variance as for the DO approximation. For equation (3.37), the result would remain a

first-order approximation and be similar to the above first-order Taylor series approximation

which was an expansion around the local range-dependent mean sound speed field.

Given an approximation for 𝑐(𝑠), we could extend this approach to any (higher-order)

function that approximates 𝑐(𝑠) locally and incorporate a stochastic term. Legendre poly-

nomials can be used to approximate functions for sound speed; however, the computational

expense and complexity increase with the increase of the order of polynomials required to

accurately represent the SSPs. All all these approaches are related to local polynomial chaos
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expansion [70, 27], which can become very expensive if the order is increased and not so

accurate if the stochastic fields to be approximated are dynamic and variable [70].

3.6.3 DO-Ray Computational Cost vs Monte Carlo

Consider a matrix form of our governing ODEs (3.3) and (3.4):

𝑑X𝑟,𝑑

𝑑𝑠
= C. *Ξ𝑟,𝑑 (3.39)

and

𝑑Ξ𝑟,𝑑

𝑑𝑠
= C𝑥. * ∇𝑟,𝑑C . (3.40)

For a paralleled Monte Carlo approach, the number of floating point operations (FLOPS)

to compute the RHS of any of the range or depth component matrices is 𝑅 × 𝐻 FLOPS.

This is the exact same number of FLOPS in computing the value inside the expectation of

(3.25) and (3.26), with the added number of FLOPS to recombine the mean, DO modes,

and DO coefficients. Without even considering the cost of (3.27) through (3.30), since our

present DO implementation does not use the efficient approximation of Section 3.6.2, the

implementation is less efficient than Monte Carlo. To understand why, we start with an

ODE of a form where where a DO implementation offers computational savings.

Consider an ODE of the form:
𝑑X
𝑑𝑠

= 𝐴X (3.41)

as opposed to using the hadamard product (.*) as in our computations, with 𝐴 being a

𝑅 × 𝑅 matrix. The number of FLOPS to compute the RHS of (3.41) is 𝑅𝐻(𝑅 − 1). If

we represented X in a reduced form the computation of 𝐴x and 𝐴X̃ are 2𝑅2 − 𝑅 and

2𝑅2𝑀−𝑅𝑀 respectively. Therefore computational savings is achievable if we can represent

X with less than 𝐻−2
2 modes.

This appears to be a moot point, but we still consider why we cannot represent (3.40)
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and (3.41) in the form of (3.41). Consider X𝑟(𝑠; 𝜂) consisting of R rays:

𝑑X𝑟

𝑑𝑠
= 𝑐(X)Ξ𝑟;

𝑐(X) =

⎡⎢⎢⎢⎣
𝑐1(𝑠)

. . .

𝑐𝑅(𝑠)

⎤⎥⎥⎥⎦
(3.42)

In this case we could modify the equation to remove the hadamard product making 𝑐(x)

a diagonal matrix with the rays sound speed at step s along the diagonal for each ray.

Observing the ODEs in this form illustrates why our present implementation will fail to

provide computational savings, the computations do not rely on mutual information between

rays.

Our use of a characteristic or Lagrangian approach when we discretized the wave-front

to discrete rays traveling perpendicular to the wave, our derivation removed any correlation

in space between the rays. Since each ray is computed independently without concern for

its neighbors, we cannot hope to achieve computational savings with the DO-Ray equations

as implemented.

Based on the preceding paragraphs, it follows to ask, "Why is a DO-Ray approach is

worth implementing?" Though in deriving the equations that would govern ray trajectories

we removed the opportunity to capture ray inter-dependencies, that does not mean they are

no longer present. As each ocean SSP will govern how a group of rays evolves, a Lagrangian

approach allows us to see how the energy propagates with a certain number of rays to

represent the field. We should be able to capture the majority of the information about

our wave front with a reduced representation of the rays as shown shown in our feasibility

section. First, we could use the reductions discussed in Section (3.6.2). Second, we could

utilize the wave-front information itself. We will indeed show that a low rank representation

of the discretized wavefront can be marched in the ray domain ("𝑠") and produce accurate

representations of the stochastic field, even if more expensive in our present implementation.

With this being possible, if we implement a DO wavefront or a modified DO-Ray scheme

using Section (3.6.2), we could use reduce the computational cost below that of Monte-Carlo.

We discuss these opportunities in Chapter 5.
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3.6.4 Specific Stochastic DO-Ray Implementation

We now outline the specifics of how we implemented the stochastic DO-Ray equations. This

outline will also further crystallize the above computational discussion. Since ultimately

DO-Ray is compared to a Monte-Carlo implementation of the deterministic model, we list

both.

To implement a Monte-Carlo computation of a determinisitc model with uncertain initial

conditions, we assume that each ray is computed independently. The computation for all

rays in all ocean realizations can then be computed in parallel through following Algorithm:

∙ Create initial state matrices X and Ξ.

∙ Compute (or table look-up) 𝑐(𝑠) and ∇𝑐(𝑠) for all rays in all realizations.

∙ For s = 1:𝑅𝑎𝑦𝐿𝑒𝑛𝑔𝑡ℎ
Δ𝑠

∙ Integrate the system of ODEs (Finite Difference or Runge-Kutta) to evolve X(𝑠)

and Ξ(𝑠) to X(𝑠+ 1) and Ξ(𝑠+ 1).

∙ Identify reflections and modify X and Ξ accordingly.

∙ Compute (or table look-up) 𝑐(𝑠+ 1) and ∇𝑐(𝑠+ 1) for all rays in all realizations

at the new X(𝑠+ 1).

∙ End.

Our present DO-Ray implementation for the stochastic reduced-order model computes

all rays and realizations in parallel, but requires additional steps as outlined below:

∙ Perform Monte Carlo runs and create initial state matrices X and Ξ and compute the

reduced order representations: mean, DO modes, and DO coefficients.

∙ Compute (or table look-up) 𝑐(𝑠) and ∇𝑐(𝑠) for all rays in all realizations.

∙ For s = 1:𝑅𝑎𝑦𝐿𝑒𝑛𝑔𝑡ℎ
Δ𝑠

∙ Integrate the system of ODEs (Finite Difference or Runge-Kutta) to evolve

mean, DO modes, and DO coefficients, separately.

∙ Adjust DO modes and coefficients to ensure orthonormal basis is maintained.

∙ Identify reflections and modify DO modes, and DO coefficients.
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∙ Compute (or table look-up) 𝑐(𝑠+ 1) and ∇𝑐(𝑠+ 1) for all rays in all realizations

at the new X(𝑠+ 1).

∙ End.

While both algorithms have the same basic integration steps, there are several differences.

We will describe these below; however, it is important to point out that our present algorithm

will not be computationally efficient as compared to a Monte Carlo implementation. Since

it has additional computational steps, such as evolving three ODE’s instead of two, we are

increasing the computational expense. We would have to gain efficiency using the reduced

order nature of the DO ray field. Later in this chapter we will explore how we may improve

the computational efficiency our implementation; however, we leave this for future work.

3.7 Stochastic DO-Ray Computational Schemes

3.7.1 Initialization

Consider a field of ray traces where the SSPs are stochastic random varaables, but the source

is at the same range and depth. Since the ray trajectories are identical at the start, with a

small variation in the sound speed after a 1 m step, there is very little variation in the field

of ray traces such that the entire field can be represented by its mean. Hence the linear

combinations of the DO modes and coefficients are at or very near zero. Because of this, we

can perform Monte-Carlo computations for each of the realizations to "initialize" the field.

In order to initialize the evolution equations (3.17) through (3.21), we compute an en-

semble of deterministic ray traces for each of the sound-speed profiles sampled from a dis-

tribution. The range, or number of steps for which each of these must be computed is

determined by the variation in the sound-speed profile distributions, but can be generally

stated that we should march far enough to establish individual correspondence between the

individual SSPs and their associated ray traces [83, 4].

Once we have computed the subsequent ensemble of ray-traces, we can compute our

initial mean, DO modes, and DO coefficients of the stochastic field. We compute the initial

conditions for the modes and stochastic coefficients at step "𝑠" through the singular value

decomposition (SVD) of the ensemble of realizations. Upon establishing these initial con-

ditions, the evolution equations are then computed using the preferred direct integration
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scheme (Finite Difference, Runge-Kutta, etc.). When properly initialized, the correspon-

dence for each sound-speed profile to its associated ray trace will be maintained throughout

the evolution of the DO-Ray equations.

3.7.2 Re-Orthonormalization

Earlier in this chapter, we analytically derived the DO-Ray equations. A key to that deriva-

tion was that we satisfy the DO condition and that the modes of our stated variables form

an orthonormal basis. While this is true for an analytical solution, once we implement the

numerical solution (e.g. using Finite Differences), after our first time step, the modes will

no longer be orthonormal due to numerical errors [97]. Thus, we require an efficient way to

correct the numerical modes such that they are numerically orthonormal to each other, while

they remain close to their predicted orientation in the stochastic subspace and the realiza-

tions are closely maintained. In matrix form, let U be a matrix containing the computed

modes at a given range-step. We desire a matrix A such that:

Ũ = UA (3.43)

where A is as close to the identity matrix as possible. For an in-depth derivation and

analysis of the method used, we direct the reader to [55, 96, 88].

We start with the Gram matrix of the evolved DO modes, K. Since the modes should

be orthonormal the numerical errors induced can be expressed as (K − I), where I is the

identity matrix, and (K−I) is very "small" in terms of its Frobenius norm. We assume that

there exists a matrix A also close to I such that A𝑇KA = I. Since I is symmetric positive

definite, we restrict this closest A to be also symmetric positive definite and come to the

following [55]:

A = VΣ−1/2V𝑇 = K−1/2 (3.44)

Using this information, we construct a simple algorithm to obtain A:

∙ Compute Gram matrix, K of the DO modes

∙ Perform Eigen Decomposition to obtain VΣV𝑇

∙ Compute A, A = VΣ−1/2V𝑇
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While this algorithm will re-establish the orthonormal basis of our stochastic subspace,

because we altered the DO modes, we must also perform a similar update to the DO coef-

ficients in order to preserve accurate physical realizations. Let the superscript "*" denote

the post-reorthonormalization matrices. Let the matrix Z perform a similar function for

the stochastic coefficents as A did for the modes, but instead ensures that realizations are

preserved: B* = BZ and X̃B𝑇 = X̃
*
B*𝑇 . Hence, we have:

X̃
*

= X̃A; B* = BZ

X̃B = X̃
*
B* = X̃AZ𝑇B𝑇

Z = A−𝑇

(3.45)

3.7.3 Surface and Bottom Reflections

Because we are operating in a ray domain, our boundary conditions, specifically the ocean

surface and bottom cannot be incorporated into the solver of our system of differential equa-

tions. This also needs to be addressed in the Monte-Carlo and DO-Ray approaches. Earlier

in this chapter, we covered two implementations for the deterministic implementations. We

now cover ways to implement them both in the DO-Ray approach and the potential draw-

backs for each.

Singular Value Decomposition Recompute for Hard Implementation

Consider 104 ocean realizations, with each ocean realization consisting of ray traces of 10

rays. To evaluate whether a ray has interfaced, we have to evaluate every ray position in

every realization and check if the ray has reached the interface. We would then compute

the reflected ray paths according to (3.12). In the deterministic implementation, we are set

to continue marching along in the new ray direction. Because of the reduced order of the

DO-Ray methodology, changing one ray direction is not a trivial matter. There is no simple

correspondence to altering a one or more ray’s parameters in the fields X and Ξ and the

alteration to the DO Modes and DO coefficients. Therefore, should this occur to continue

to evolve the mean, DO modes, and DO coefficients, we must recompute a truncated SVD

of the fields X and Ξ adding significant computational expense to this step.

With only a few rays, this additional SVD computation may only be required on relatively

few number of steps making the added computational expense manageable. In the case of
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104 rays, a bundle of rays are likely to interface a boundary at every step over an long

interval of steps increasing computational costs.

Singular Value Decomposition Rank-1 Update for Hard Implementation

While there is no simple correspondence between altering one or more ray parameters in the

fields X and Ξ, and altering the DO Modes and DO coefficients, there have been advances

in approximating how the SVD matrices are altered when performing updates to individual

parameters of the reconstructed matrices.

For example, [11] explains in detail how we may approximate the updates to the SVD

matrices U, Σ, and V, and how significant computational expense be mitigated in the event

of low-rank updates, specifically rank-1 updates. Here we will present the methodology and

direct the reader to [11] for a more detailed explanation.

For the stochastic field matrix X* = X − x, we aim to evolve the SVD (U, Σ, and

V) and thus evolve the stochastic fields using the DO-Ray differential equations. Now, if

we alter one component in X, we can represent the alteration as the multiplication of two

vectors a and b as follows:

X + ab𝑇 = U′Σ′V′𝑇 . (3.46)

U′Σ′V′𝑇 are computed my making use of a modified Gram-Schmidt algorithm and the

diagonalization of a (𝑟𝑎𝑛𝑘(X*) + 1) by (𝑟𝑎𝑛𝑘(X*) + 1) matrix. While this shows significant

savings over the full SVD computations, there are several drawbacks to using this method in

the present DO-Ray implementation. First, this rank-1 update is more efficient than a full

SVD; however to recompute the DO modes and coefficients, we perform a truncated SVD,

and therefore may not result in computational savings. Second, the significant computational

savings is achieved for rank one updates. If reflections occurred in multiple realization, the

update would have to occur in series for each reflection also adding computational cost.

Lastly, just as with the previous section, this method is inefficient where a bundle of rays

are likely to interface a boundary at every step over an interval of steps. For these reasons,

in general cases, the rank-1 update implementation will not show noticeable improvement

over recomputing the SVD for our applications.
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Reflecting SSPs

When confronted with reflections in the DO-Ray methodology, the ideal situations would

be to only consider cases where rays will not interface with the boundary (e.g. deep sound

channel propagation). With this in mind, by reflecting the sound speed profile functions over

the surface and bottom boundaries, thus defining sound-speed functions at negative depths

and depths greater than the ocean bottom, we allow the DO-Ray computation to continue

into the reflected domains, where we can reflect the rays back into the actual ocean domain

as a post processing step. This removes the computational cost of evaluating for interactions

and the need to compute truncated SVDs as the rays propagate. The obvious drawback to

this method is that we are restricted to flat-surface and bottom interactions removing any

range dependent bathymetry. Still, due to the gained efficiency and non-algorithm intrusive

nature of this method, we choose reflecting SSPs as our boundary reflection implementation

method in Chapter 4 demonstrations.
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Chapter 4

Test Cases and Stochastic DO-Ray

Implementation Results

In this chapter we implement and evaluate the DO-Ray algorithm as outlined in Chapter 3.

We present three scenarios of stochastic ocean states (varied SSPs), and compute ray traces

for all oceans using both Monte Carlo and DO-Ray implementations. Using these scenarios,

our aim is to understand how the reduced representation of the Rays affect the accuracy of

the stochastic computation. To assess accuracy we can first look at how the reduced order

method explicitly alters the specific ray paths, similar to how we assessed the accuracy in

Chapter 3. We also observe how the accuracy converges with respect to the step size and

the number of DO-modes used in the computation.

We start with a manufactured distribution to assess DO-Ray in an idealized (i.e. propagation

patterns are easily verified), non-Gaussian scenario. We then look at two realistic scenarios

for the stochastic ocean acoustic environment with assumed Gaussian distributions. While

we aim to assess the feasibility of a reduced order representation of a wave-front, discretized

as rays, a practical application would be to use these calculations to infer the correct real-

ization or ocean environment in a Matched-Field Processing or Bayesian Learning algorithm

with a measurement of a signal parameter (e.g. TL or travel time). Hence, DO-Ray’s abil-

ity to accurately capture the variability in a ray trace is the ultimate assessment of its

feasibility. With this in mind, for all cases the acoustic source is located at a point of rela-

tively high variability. Of course, the sound signal is assumed to satisfy the high frequency

approximation for Ray Methods.
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4.1 Constant Gradient Sound Speed Profile Distribution

In Chapter 3, constant gradient SSPs were useful in validating the results of our deterministic

implementation due to the ability to compare it to an analytical solution. The constant

negative gradient SSPs are idealized as they are typically not observed in nature over an

entire column of deep water (+2000m). As a test case they are useful because the physics are

easily understood and validated. There are real ocean environments that have a relatively

constant positive sound speed gradient. Referring back to (1.1), we know that the sound

speed of the ocean is dependent on three factors: Temperature, Pressure, and Salinity. In

the polar regions, the water column temperature and salinity can be considered almost

uniform at all depths [65]. Under these conditions, sound-speed varies only according to

pressure (depth) resulting in a constant, positive, sound-speed gradient. In shallow water

at mid-latitudes, the sun heats the surface resulting in warmer water near the surface and

gradually getting cooler at deeper depths, the resultant sound speed profile would have a

negative gradient. This negative gradient is less likely in deep water as eventually the effect

of the sun’s warming would be overtaken by the ocean depth transitioning to a positive

gradient at deeper depths.

To illustrate the feasibility of a reduced representation of the stochastic ray trace fields

produced by constant gradient profiles, we combine constant negative and constant posi-

tive gradient distributions in order to sample from a non-Gaussian distribution of SSPs.

The combinations of these idealized sound speed distributions in a 2000m depth ocean al-

lows us to observe DO-Ray performance when considering stochastic ray traces that have

fundamentally different characteristics.

In Figure 4-1, we show our SSP probability density function (pdf) and 100 randomly

sampled SSPs. We computed deterministic ray traces using the mean SSP and SSPs located

near the edges of the pdf. We display the example SSPs and associated ray traces in Figure

4-2. We easily observe variability in the ray propagation as the rays corresponding to a

negative sound speed gradient tend to bend toward the ocean floor, while the opposite

occurs with the positive sound-speed gradient realization. In Figure 4-3 we can see the

variation according to the initial launch angle at a specified Ray length, 104 m. Due to the

reflections and refraction within the wave-guide we see a large variability with identical ray

launch angles varying as much as 300m and also merging to nearly identical locations.
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(a) PDF (b) SSPs

Figure 4-1: (a) We combine two separate normal distributions with means at ±8e-3 respec-
tively into a non-Gaussian distribution (b) From this distribution, we can sample SSPs of
different sound-Speed Gradients

(a) (b)

Figure 4-2: (a) From our constant-Gradient SSP distribution, we sample 1000 SSPs. (b)
We computed the associated ray traces for the highlighted red (mean), green and blue
SSPs. Ray traces computed using 11 rays at evenly spaced angles between ±20∘, 2nd-order
Runge-Kutta with a 1m step-size.
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(a) (b)

Figure 4-3: (a) From our constant-Gradient SSP distribution, we sample 1000 SSPs. We
computed the associated ray traces for the highlighted SSPs. (b) Plot shows the variability
in the different SSPs according to each ray path. Due to the variability in SSPs, we observe
the rays starting with the same initial conditions vary up to hundreds of meters after 104

steps. Some differences are near zero due to rays crossing similar spaces in the Cartesian
plane however it is easily observed in Figure 4-2 that the rays are on different trajectories.
Traces computed using our deterministic model with 1001 rays at evenly spaced angles
between ±20∘, 2nd-order Runge-Kutta with a 1m step-size.
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4.1.1 DO-Ray Accuracy as Compared to Monte Carlo

Using the intuition gained from feasibility analysis done in Chapter 3, we sampled 1000

oceans from our constant-gradient distribution of SSPs and computed the associated ray

traces with 1001 Rays. We make a realization-to-realization comparison of the Monte-Carlo

and reduced-order DO-Ray computations to assess the accuracy of the ray positions after

range marching to 104 m with a 1 m step-size.

Capturing the Stochastic non-Gaussian Variability

To assess DO-Ray’s accuracy in capturing the variability of the environment, we first produce

an assessment of how variable the environment is with respect to ray positions. How much

does a ray, starting with the same initial condition, vary with the selected SSP. Figure 4-3

shows how the individual ray positions vary as compared to the position of the mean SSP.

Some rays converge to nearly the same position as the rays cross the same point in the

Cartesian plane due to reflection and refraction. Still with our SSP distribution, we see that

after 104 steps to 104 m, the majority of the individual rays will vary a few hundred meters

as compared to the mean SSP.

After computing the ray trace ensemble with DO-Ray, we compare the specified realiza-

tions within the ensemble to the deterministic implementation, a realization-to-realization

comparison. We refer to Figure 4-4 for a qualitative representation of the accuracy of the

DO-Ray implementation. The ray traces are nearly indiscernible as the DO-Ray overlays

the deterministic solutions for all of the selected ocean SSPs.

Figure 4-5(a) gives us the error for each ray in the selected SSP environment. The

subsequent figures contrast the selected SSPs for a specific number of DO modes used in

the DO-Ray computations. We can make two important assessments. First looking at the

vertical axis, we see that though the environments vary significantly, the error in the DO-

ray computation is relatively small. More significant in these plots is the extent to which

the computation captures the environment based on the SSPs likelihood in the probability

density function. We observe the mean SSP as well as those on the edges of SSP pdf contain

higher peak errors and overall more error as compared to the SSPs selected from near the

local maximums of our pdf.

Figure 4-6 evaluates the effects of varying the number of DO modes within the particular
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(a) (b)

(c) (d)

(e) (f)

Figure 4-4: Panels (a), (c), and (e) Computed ray traces for highlighted SSPs. Panels
(b), (d), and (f) show the DO-Ray Computed Ray Trace (5 DO modes) overlaid with
deterministic (Monte Carlo) traces. All traces computed using with 1001 Rays (26 Plotted)
evenly at evenly spaced angles between ±20∘ with a 1m step-size. The deterministic model
uses 1st-order Forward Difference.
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(a) (b)

(c) (d)

Figure 4-5: (a) Computed ray traces for highlighted SSPs. Panels (b) through (d) show
the associated error as compared to the Monte Carlo solution using the specified number
of modes. We observe that the DO-Ray methodology error is a very small fraction of
the variability in the rays. We also observe that, generally, the methodology is better at
capturing the variability in the SSPs of higher probability of occurrence (green and blue).
Traces computed with 1001 rays evenly at evenly spaced angles between ±20∘, 1st-order
Forward Difference with a 1m step-size.
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realizations. Again we can see that the peak error is reduced as we increase the number of

modes.

Based on these two figures we know that the majority of the information contained in the

wave-front field, can be captured using less than five of the 2002 DO-modes and maintain the

accuracy of the individual rays to more than an order of magnitude less than the variability

in the field. To make a better assessment of this, we can look at the convergence of the

average error among the rays with the number of DO modes used in the computation.

Convergence with Number of DO Modes

When assessing the feasibility of a reduced-rank representation of the ray trace field, we

observed through the singular values how many DO modes may be required to capture

the majority of the information at every step. With stochastic DO-Ray predictions, we

computed the ray traces by evolving the reduced-rank stochastic fields with different numbers

of DO modes. In Figure 4-7 we illustrate how the error converges with the number of DO

Modes used. For the mean profile we observe a 1st order convergence with the number of

modes. The SSPs selected near the edges of the SSP pdf converge with less than first order

convergence after the initial 10 DO Modes. Of note we observe that with less than 10 modes

we are able to get an average accuracy less than 1 m for these realizations indicating that

error due to numerical errors dominates the error associated with fewer modes.

Convergence with Step Size

For the DO-Ray computations, we implemented a first-order Finite Difference (Forward

Difference) scheme and make realization to realization comparisons to our deterministic

computations using second-order Runge-Kutta scheme with a step-size of 10−2m. We plotted

the results in Figure 4-8.

Here again, for our mean profile we observe the expected first-order convergence. For

the profiles on the outer edges of SSP pdf we see a first order convergence, that decays as

error is less than 1 m where the numerical errors are more significant than the errors due to

step size.
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(a) (b)

(c) (d)

(e) (f)

Figure 4-6: Panels (a), (c), and (e) Computed ray traces for highlight SSPs. Panels (b), (d),
and (f) show the associated error as compared to the Monte Carlo solution for a particular
realization when using 2, 3, or 5 modes. Note errors in a realization and the trend as
we increase the number of modes. For a particular realization the error approaches the
deterministic solution. Ray traces computed 1001 rays at evenly spaced angles between
±20∘, 1st-order Forward Difference with a 1m step-size.
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(a) (b)

(c) (d)

(e) (f)

Figure 4-7: Panels (a), (c), and (e) Computed ray trace ensembles for highlighted SSPs
with a varying number of DO modes. Panels (b), (d), and (e) show the convergence for
selected realizations of the DO-Ray Methodology with the deterministic solution. 1st-Order
convergence line plotted for reference. Deterministic traces computed using our deterministic
model with 1001 rays evenly at evenly spaced angles between ±20∘, 1st-order Forward
Difference with a 1m step-size.
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(a) (b)

(c) (d)

(e) (f)

Figure 4-8: Panels (a), (c), and (e) Computed ray trace ensembles for highlighted SSPs with
a varying step-size. Panels (b), (d), and (e) show the convergence for selected realizations of
the DO-Ray Methodology with the deterministic solution. 1st-Order convergence line plot-
ted for reference. DO-Ray computations used 10 DO modes. Deterministic traces computed
using our deterministic model with 1001 rays evenly at evenly spaced angles between ±20∘,
second-order Runge-Kutta 0.01m step-size.
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4.2 Deep Sound Channel Sound Speed Profile Distributions

Sound fixing and ranging (SOFAR) or deep sound channels (DSCs) are the result of specific

ocean sound speed characteristics, principally a negative over a positive sound speed profile

[65, 37]. Primarily observed in the mid-latitudes, having a minimum sound speed at deeper

depths results in a condition where sound propagates in a duct, not interacting with the

surface or bottom, making the only means of attenuation the absorption in the seawater

[23]. In a deep sound channel, the acoustic energy of a source can be detected at ranges of

several tens to hundreds of kilometers.

(a) SSP (b) Ray Trace

Figure 4-9: Example of acoustic rays propagating in a deep sound channel with the acoustic
source located at the deep sound channel axis (depth of minimum sound speed). Ray traces
computed using 29 Rays evenly at evenly spaced angles between ±14∘, 2nd-order Runge-
Kutta with a 1m step-size.

Consider a situation where the state of an upper column is highly variable due to ab-

normal weather events or abnormal seasonal variation. For underwater communication,

detection and localization, it is of tactical significance to determine whether DSC propa-

gation exists. A simple way of examining the existence and extent of the SOFAR channel

would be to measure sound intensities at the ranges where we would expect the energy to

focus. Here we consider that we have the means to measure signals produced only from

about 10 km distances.

In this scenario, we characterize the uncertainty as a Gaussian distribution of sound

speed at the ocean surface, with sound-speed characteristics becoming more similar as depth
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(a) (b)

Figure 4-10: From normal distribution of SSPs characterized by the surface sound-speed
with a mean at 1500m/s (a) from which we can sample to obtain SSP realizations (b).

(a) SSP (b) Ray Trace

Figure 4-11: (a) From our SSP distribution, we sample 1000 SSPs. (b) We computed the
associated ray traces for the highlighted red (mean), green and blue SSPs. Only the green
SSP environment of the three would result in a DSC. Ray traces computed using 11 Rays
evenly at evenly spaced angles between ±20∘, 2nd-order Runge-Kutta with a 1m step-size.
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increase (i.e. the SSP at deeper depths is unperturbed by surface events). In Figures 4-9

and 4-10, we show our sample distribution as well as computed ray traces for the mean

SSP and two profiles closer to the edges of our Gaussian pdf. Only the SSP highlighted in

green would result in a DSC propagation environment where with the other two, over long

distances the sound is refracted back to the surface. The variability in the ray propagation

is still observed at shorter ranges, hence a measurement at this range could confirm the

existence or non-existence of a DSC.

Capturing the Stochastic non-Gaussian Variability

Using the same computational schemes as those used for the Constant gradient SSPs, we

computed ray trace ensembles with the stochastic DO-Ray equations and algorithm, then

computed specified realizations within the ensemble using a deterministic implementation

for comparison. Figure 4-12 provides a qualitative representation of the accuracy of the

DO-Ray implementation. Again the ray traces are nearly indiscernible at this range scale

as the DO-Ray overlays the deterministic solutions for all of the selected ocean SSPs.

Convergence with Number of DO Modes

For this distribution of SSPs the variability in ray paths result in positions ∼1000 m apart,

still with relatively few modes, we are able to recreate realizations within 1−10 m accuracy.

In Figure 4-13, we showcase the first order convergence up to about 200 of the available

2002 DO modes where the numerical errors begin to dominate the error.

4.3 Variable Sonic Layer Depth - Sound Speed Profile Distri-

butions

For our final test case we consider a situation where the overall shape of the SSP is known;

however, a key characteristic is uncertain. In the mid-latitudes (tropical and sub-tropical)

the sound speed profiles can be sub-characterized into three layers [16, 37, 23]. The top

layer (surface to a near surface depth of maximum sounds speed), has a nearly uniform

temperature profile, where the variation in depth is a consequence of atmospheric events.

Due these effects at the ocean surface, the sound-speed values down to depths of 500m

may be affected. This layer is known as the sonic layer. We refer to the next layer as the
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(a) (b)

(c) (d)

(e) (f)

Figure 4-12: Panels (a), (c), and (e) Computed ray traces for highlight SSPs. Panel (b), (d),
and (f) show the DO-Ray computed ray trace (50 DO modes) overlaid with deterministic
(Monte Carlo) traces. All traces computed using with 1001 Rays (26 Plotted) evenly at
evenly spaced angles between ±20∘ with a 1m step-size. The deterministic model uses
1st-order Forward Difference computational scheme.
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(a) (b)

(c) (d)

(e) (f)

Figure 4-13: Panels (a), (c), and (e) Computed ray trace ensembles for highlighted SSPs
with a varying number of DO modes. Panels (b), (d), and (e) show the convergence for
selected realizations of the DO-Ray Methodology with the deterministic solution. First
order Convergence Line plotted for Reference. Deterministic traces computed using our
deterministic model with 1001 Rays evenly at evenly spaced angles between ±20∘, 1st-order
Forward Difference with a 1m step-size.
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thermocline, where the decrease in temperature with depth results in a negative sound speed

gradient. At a certain depth, the temperature is relatively constant, and pressure becomes

the dominant feature resulting in a positive gradient to the sea floor. This is known as the

deep isothermal layer and can form a deep sound channel similar to the previous case [23].

Figure 4-14: Relationship between temperature and sound speed profiles in the deep ocean
adapted from [23]. Variation in atmospheric forcing can make the sonic layer depth variable
over relatively short temporal scales (hrs or days).

In this test case, we assume uncertainty in the sonic layer depth consist of a Gaussian

distribution with a mean layer depth at 250 m. Similarly to the previous test, we show

in Figures 4-15 and 4-16 cases our sample distribution as well as computed ray traces for

the mean SSP as well as two profiles closer to the edges of our Gaussian distribution. We

observe that in all cases we see the characteristic propagation along a surface duct due to

the relative sound-speed maximum at the sonic layer depth and the shadow zone created in

the vicinity of the sonic layer depth due to the sound energy being refracted away from this

depth.

Capturing the Stochastic non-Gaussian Variability

We achieve nearly similar results as observed with the Deep Sound Channel and Constant

Gradient SSPs. However, due to the larger changes in the sound speed gradient and the

position of the source in the vicinity of the maximum sound speed, we observe greater errors

with similar convergence rates.
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(a) (b)

Figure 4-15: (a) Normal distribution of SSPs characterized by the Sonic Layer Depth with
a mean at 250m, (b) from which we can sample to obtain SSP realizations.

(a) SSP (b) Ray Trace

Figure 4-16: (a) From our SSP distribution of varied Sonic Layer Depths, we sample 1000
SSPs. (b) We computed the associated ray traces for the highlighted red (mean), green
and blue SSPs. Ray traces computed using 16 Rays evenly at evenly spaced angles between
±30∘, 1st-order Forward-Difference scheme with a 1m step-size.
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(a) (b)

(c) (d)

(e) (f)

Figure 4-17: Panels (a), (c), and (e) Computed ray traces for highlight SSPs. Panels (b), (d),
and (f) show the DO-Ray Computed Ray Trace (100 DO modes) overlaid with deterministic
(Monte Carlo) traces. All traces computed using with 1001 Rays (26 plotted) evenly at
evenly spaced angles between ±20∘, 1st-order Forward-Difference computational scheme
with a 1m step-size.
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(a) (b)

Figure 4-18: (a) Computed ray trace ensembles for highlighted SSPs with a varying number
of DO modes. (b) Convergence for selected realizations of the DO-Ray Methodology with
respect to the deterministic solutions. First order Convergence Line is shown for Reference.
Realizations computed with 1001 Rays evenly at evenly spaced angles between ±20∘. De-
terministic traces computed using our deterministic model 2nd-order Runge-Kutta Forward
Difference with a 10−2m step-size.
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Chapter 5

Conclusions and Future Work

5.1 Review and Conclusion

Ocean Acoustic computation is inherently challenging. This is compounded when attempt-

ing to perform stochastic computations with constrained resources. Innovative computa-

tional techniques and reduced order models exist with varying degrees of success. In this

work, we reviewed the foundations and several practical methods for acoustic computation:

Parabolic Equation, Level Set, and Ray methods. We also reviewed stochastic computa-

tional methods to provide uncertainty quantification as well as reduced order models. For

the first time, we combined the Ray Method for acoustic computation with the stochastic

Dynamically Orthogonal Equations (DO-Ray). We derived the stochastic DO-Ray differen-

tial equations, developed related reduced-order algorithms, and demonstrated the ability to

predict stochastic ray trace acoustics fields with the dynamically adaptive reduced-rank DO

representation.

To provide a basis for evaluating the accuracy of the DO-Ray results, we implemented

a deterministic ray tracing model. We validated our deterministic ray tracing computations

with both idealized and realistic stochastic environments, in part by observing the expected

error convergence rates. We derived the stochastic DO-Ray equations and discussed sev-

eral of the computational and numerical challenges associated with our present DO-Ray

implementation.

Lastly, we applied a DO-Ray methodology to three stochastic ocean scenarios: Con-

stant Gradients, a variable Deep Sound Channel, and a stochastic Sonic-Layer Depth. We

observed how the stochastic DO-Ray methodology accurately captures the non-Gaussian
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uncertainty in the ocean acoustic environments, even if only a small fraction of the available

DO modes is used, using realization-to-realization comparisons. Based on these results, we

see that stochastic Ray-Trace field forecasting is feasible with a reduced rank-representation.

The remaining challenge is how to make the details of the implementation computationally

efficient when compared to a brute force Monte Carlo implementation.

5.2 Future Work

As stated previously, the stochastic DO-Ray methodology as implemented does not offer

computational savings, but points to where they are feasible. By evolving the ray field it

terms of its mean, DO modes, and DO coefficients, we gain information about the relative

importance of the oceans and rays. By using this information, we may be able to either

reduce the number of required "look-ups" performed in determining sound speed, reducing

the dimension of the state matrices, or some combination of the two. Appendix A provides

a more in-depth explanation of this way forward. We also discussed in this thesis the

possible use of local approximations to represent the nonlinear ray to sound-speed function

transformation, including local sound-speed mean, sound-speed Taylor-Series, and sound-

speed function. The use of level-set approaches is also promising to capture all stochastic

rays at once [9].

The application of the DO-Ray methodology in realistic 3D ocean acoustic environments

is an additional research direction. Assuming the ability to gain efficiencies as described

above, further investigation of the numerical schemes and implementation of the developed

methodology in a third dimension may offer increased savings.

How uncertainty in the ocean seabed and surface are also topics requiring investigation.

Ray trajectories, especially over mesoscale distances, are highly dependent on the ocean

floor and surface characteristics. The ability to capture surface and seabed variation in

stochastic computation would advance the practical application to stochastic shallow water

and under-ice acoustic predictions.

Lastly, this methodology could be coupled with Bayesian Assimilation techniques to

improve the forecasting of the ocean and acoustic [76, 43]. This offers advantages over

previously mentioned techniques in such as tomography [65], matched field processing [18,

8], by allowing for the richer dynamics-based estimation of non-Gaussian statistics using
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stochastic differential physical laws. The results will be a more complete characterization

of the coupled probability densities and a more powerful joint estimation of the ocean and

acoustic states and their posterior uncertainties, combining multivariate observations with

dynamical models based on principled information theory.
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Appendix A

Gaining Computational Efficiency

over Monte-Carlo Implementation

We start with a matrix representation of the deterministic implementation for ray tracing:

𝑑Ξ𝑟,𝑑

𝑑𝑠
= −C𝑥. * ∇𝑟,𝑑C (A.1)

𝑑X𝑟,𝑑

𝑑𝑠
= C. *Ξ𝑟,𝑑 (A.2)

Using direct integration, to compute the RHS (equation "right-hand-side") at every step

"s," we perform four Hadamard products between 𝑅×𝐻 matrices along with the required

"look-up" functions for matrices of the same size. The entire computation of the RHS for

the ray trace ensemble is 𝑅 * 𝐻 * 𝐿 + "sound-speed look-ups", where 𝐿 is the number of

steps. This is referred to as the "MC" cost, or the cost of Monte-Carlo implementation. To

better assess where DO-Ray may gain efficiency we characterize its computational cost as:

∙ 𝐷𝑂: RHS computed as a reduced-order model (ROM), where reconstructing full real-

ization matrices is not required (i.e. all computations are completed in terms of mean,

DO modes and coefficients). Based on discussion in Chapter 3, the lack of mutual in-

formation between ray computations in DO-Ray makes this efficiency infeasible with

the ray method equations as derived.

∙ 𝐷𝑂𝑀𝐶 : A computational cost where by using the information and efficiencies gained

with DO-Ray, we obtain computational savings, even though a portion of the RHS
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must be computed with Monte-Carlo (e.g. look-up of sound speed for specific realiza-

tions).

∙ 𝑀𝐶: Cost of Monte-Carlo implementation.

∙ 𝐷𝑂+𝑀𝐶: A computational cost where all of the same matrix multiplications for MC

are still done, with the added cost of DO.

𝐷𝑂 < 𝐷𝑂𝑀𝐶 < 𝑀𝐶 < 𝐷𝑂 +𝑀𝐶 (A.3)

As described in Chapter 3 and as presently implemented in Chapter 4, the computational

cost of our DO-RAY algorithm is characterized as DO+MC. The RHS of the above ODEs

must do all of the computations for MC in addition to the added computations of DO. We

assess this is due to the step of re-combining the mean, modes and coefficients of X in order

to compute C𝑥, and Ξ𝑟,𝑑 to perform the required Hadamard products C𝑥. *Ξ𝑟,𝑑.

A.1 Possible Solutions and Implementations

Through this work, we know that there exists a reduced representation of the ray trace field.

DO-Ray allows us to capture the relative importance of the Rays/Oceans for propagating the

wavefronts in space (characterized by the DO modes and coefficients); therefore, we should

be able to reduce the computational cost of of the RHS of our ODE’s to 𝐷𝑂𝑀𝐶 . By using

the information evolved in the stochastic subspace, we could reduce the number of look-ups

required for RHS computation, perform fewer matrix operations, or a combination of the

two. The main idea here is to use information stored in the DO modes and coefficients to

create a smaller matrix representation (of size �̃�× �̃� where �̃� ≤ 𝑅 and �̃� ≤ 𝐻) in order to

compute the RHS of equations (3.19), (3.21) and (3.24). The use of local approximations to

represent the nonlinear ray to sound-speed function transformation, including local sound-

speed mean, sound-speed Taylor-Series, and sound-speed function, should lead to the needed

efficiency.

A.1.1 Reducing Number of Oceans and/or Rays

Here we assume that some number of oceans (�̃� < 𝐻) can represent the entirety of real-

izations. Therefore we could reduce the number of operations by performing look-ups for a
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reduced number of oceans and/or rays to compute: C, C𝑥, and ∇C. While taking advan-

tage of the DO organization to construct the smaller ensemble is not a trivial task, we can

look into the following:

∙ Reductions through Gaussian-Mixture Model (GMM) Fit of the rays or realizations.

We could fit a GMM of DO coefficients obtained at every range step, then use this fit

to compute the terms on the RHS.

∙ Reductions Through Maximum Likelihood Estimator (MLE) of DO Coefficients. Can

be done for Rays or Ocean Realizations.

∙ Reduction by sampling oceans and rays: �̃� < 𝑅 and �̃� < 𝐻. Reconstruct the smaller

ensemble by clustering the ocean-angles ray realizations of the original ensemble.

By implementing any of the above we hope to reduce the number of "look-up" operations,

while maintaining the size of the matrices. This would add the computational cost associated

with GMMs, a MLE, or Clustering.

A.1.2 Reduction by Using Ensemble of Ray Traces to Obtain ROM

We could march an ensemble of rays to a specified ray length and evaluate the relative

importance. Based on the DO coefficients we pick the rays/oceans that best represent a

ROM to continue the evolution of the fields. By doing this we reduce the dimensions of our

mean (e.g. 𝑥 becomes �̃� × 1 instead of 𝑅 × 1), DO modes and coefficients as well as C,

C𝑥, and ∇C matrices reducing the number of multiplications at every step. Using DO-Ray

information, we reduce the number of look-ups and Matrix products.

We are still faced with how to pick which rays/oceans are relevant based on the DO-

Ray terms which is not intuitive. Doing so based on past trends means we will be using

assumptions based ray behavior on one section of the SSP. If the rays have not transitioned

into highly variable portions of the ocean environments, then the rays picked to be of signif-

icance will not accurately represent the variability in the oceans. We also must reform the

full representation at a later step (i.e. propagate, then interpolate back between in order to

reconstitute the entire ray field).
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