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Abstract

The coastal ocean is a prime example of multiscale nonlinear fluid dynamics. Ocean fields
in such regions are complex, with multiple spatial and temporal scales and nonstationary
heterogeneous statistics. Due to the limited measurements, there are multiple sources of un-
certainties, including the initial conditions, boundary conditions, forcing, parameters, and
even the model parameterizations and equations themselves. To reduce uncertainties and
allow long-duration measurements, the energy consumption of ocean observing platforms
need to be optimized. Predicting the distributions of reachable regions, time-optimal paths,
and risk-optimal paths in uncertain, strong and dynamic flows is also essential for their
optimal and safe operations. Motivated by the above needs, the objectives of this thesis
are to develop and apply the theory, schemes, and computational systems for: (i) Dynami-
cally Orthogonal ocean primitive-equations with a nonlinear free-surface, in order to quantify
uncertainties and predict probabilities for four-dimensional (time and 3-d in space) coastal
ocean states, respecting their nonlinear governing equations and non-Gaussian statistics; (ii)
Stochastic Dynamically Orthogonal level-set optimization to rigorously incorporate realistic
ocean flow forecasts and plan energy-optimal paths of autonomous agents in coastal regions;
(iii) Probabilistic predictions of reachability, time-optimal paths and risk-optimal paths in
uncertain, strong and dynamic flows.

For the first objective, we further develop and implement our Dynamically Orthogonal
(DO) numerical schemes for idealized and realistic ocean primitive equations with a nonlin-
ear free-surface. The theoretical extensions necessary for the free-surface are completed. DO
schemes are researched and DO terms, functions, and operations are implemented, focusing
on: state variable choices; DO norms; DO condition for flows with a dynamic free-surface; di-
agnostic DO equations for pressure, barotropic velocities and density terms; non-polynomial
nonlinearities; semi-implicit time-stepping schemes; and re-orthonormalization consistent
with leap-frog time marching. We apply the new DO schemes, as well as their theoreti-
cal extensions and efficient serial implementation to forecast idealized-to-realistic stochastic
coastal ocean dynamics. For the realistic simulations, probabilistic predictions for the Mid-
dle Atlantic Bight region, Northwest Atlantic, and northern Indian ocean are showcased.

For the second objective, we integrate data-driven ocean modeling with our stochastic
DO level-set optimization to compute and study energy-optimal paths, speeds, and headings
for ocean vehicles in the Middle Atlantic Bight region. We compute the energy-optimal paths
from among exact time-optimal paths. For ocean currents, we utilize a data-assimilative

3



multiscale re-analysis, combining observations with implicit two-way nested multi-resolution
primitive-equation simulations of the tidal-to-mesoscale dynamics in the region. We solve
the reduced-order stochastic DO level-set partial differential equations (PDEs) to compute
the joint probability of minimum arrival-time, vehicle-speed time-series, and total energy
utilized. For each arrival time, we then select the vehicle-speed time-series that minimize the
total energy utilization from the marginal probability of vehicle-speed and total energy. The
corresponding energy-optimal path and headings be obtained through a particle backtracking
equation. For the missions considered, we analyze the effects of the regional tidal currents,
strong wind events, coastal jets, shelfbreak front, and other local circulations on the energy-
optimal paths.

For the third objective, we develop and apply stochastic level-set PDEs that govern the
stochastic time-optimal reachability fronts and paths for vehicles in uncertain, strong, and
dynamic flow fields. To solve these equations efficiently, we again employ their dynamically
orthogonal reduced-order projections. We develop the theory and schemes for risk-optimal
planning by combining decision theory with our stochastic time-optimal planning equations.
The risk-optimal planning proceeds in three steps: (i) obtain predictions of the probability
distribution of environmental flows, (ii) obtain predictions of the distribution of exact time-
optimal paths for the forecast flow distribution, and (iii) compute and minimize the risk
of following these uncertain time-optimal paths. We utilize the new equations to complete
stochastic reachability, time-optimal and risk-optimal path planning in varied stochastic
quasi-geostrophic flows. The effects of the flow uncertainty on the reachability fronts and
time-optimal paths is explained. The risks of following each exact time-optimal path is
evaluated and risk-optimal paths are computed for different risk tolerance measures. Key
properties of the risk-optimal planning are finally discussed.

Theoretically, the present methodologies are PDE-based and compute stochastic ocean
fields, and optimal path predictions without heuristics. Computationally, they are several
orders of magnitude faster than direct Monte Carlo.

Such technologies have several commercial and societal applications. Specifically, the
probabilistic ocean predictions can be input to a technical decision aide for a sustainable
fisheries co-management program in India, which has the potential to provide environment
friendly livelihoods to millions of marginal fishermen. The risk-optimal path planning equa-
tions can be employed in real-time for efficient ship routing to reduce greenhouse gas emis-
sions and save operational costs.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor of Mechanical Engineering
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4-1 Consider planning the path of a vehicle between x, and xf in a flow field

v(x, t). For each arrival time, our goal is to compute a minimal energy path,

among the group of time optimal paths each corresponding to a different

vehicle speed time-series. Adapted from Subramani and Lermusiaux (2016). . 156

4-2 The flowchart outlining the three stages of the stochastic DO level-set op-

timization methodology for energy-optimal path planning, rigorously com-

bining optimal planning PDEs with ocean flow forecasts (and/or re-analyses

when re-planning). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4-3 The Middle Atlantic Bight and shelfbreak front region where we compute

energy-optimal paths. The two-way nested computational domains (1 km

and 3km resolution, respectively) are marked as white boxes, overlaid on

bathymetry (color axis, in m). The AWACS/SW06 experiment occurred

mostly in the smaller domain. Two pairs (lighter and darker grey) of start

(circles) and end points (stars) for which energy optimal paths are discussed

in detail are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
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4-4 Daily-averaged surface wind stress in N/m 2 (colored), overlaid with daily-

averaged wind vectors showing directions and amplitudes (scale arrow is 2

N/M 2 ). The wind stress that actually forces the MSEAS ocean re-analyses is

hourly and obtained from a blending of the WRF and NOGAPS re-analyses. . 158

4-5 Colormap of the dominant M2 tidal component (in cm/s), overlaid with sub-

sampled M 2 tidal ellipses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4-6 Daily-vertically-averaged horizontal ocean flow-field in the Middle Atlantic

Bight and shelfbreak front region. The horizontal currents shown are those

encountered by vehicles in a yo-yo pattern from the near surface to either the

local near bottom or 400 m depth, whichever is shallower. The flow patterns

are illustrated by their vectors, overlaid on a color plot of the flow magnitude

(in cm /s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4-7 Energy-optimal path planning for gliders navigating from the coast of New

Jersey to the Hudson River canyon: (a) Distribution of optimal arrival-time

(x-axis) and energy utilized (y-axis) for the samples (represented as dots in

the cloud) of vehicle-speed time-series, F(t; r). The colored dots are constant-

speed samples with the color representing their vehicle-speeds in cm/s (color

axis to the right). The gray dots are realizations that consume less energy

than constant-speed realizations but with same arrival-times (only these "gray

dot" realizations are shown since the others are pruned by our algorithm).

The lowest energy envelope is shown by a thick black line. The paths corre-

sponding to dots highlighted with numbers 1-8 are used as examples in our

analysis. (b) Energy-optimal paths 1-5 shown on a magnified view of a region

of the computational domain (in the inset). Paths are colored by their instan-

taneous speeds in cm/s (color axis to the right). These paths are computed

using the vehicle-speed time-series that minimizes the energy requirement for

that arrival-time from the above distribution. Paths 1 and 2 are closer to a

straight line joining the start (circle) and end points (star) than paths 3-5,

which are advected to the south by ocean currents. Points 6-9 are used for

analysis later. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
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4-8 Paths and reachable fronts for the energy-optimal gilder (#6) and time-

optimal constant-speed glider (#7) that reach the target on 02 UTC 06 Sept

2006. Each panel shows a color plot of the daily average of the depth-averaged

horizontal currents experienced by the gliders, with vectors indicating the lo-

cal flow direction (color axis in cm/s at the bottom row). These ocean flows

are overlaid with the paths and reachable fronts for gliders #6 and #7, from

the start date until the end of the day shown on each panel. The paths are

colored by their instantaneous relative vehicle-speeds (color axis in cm/s to

the right column). Glider #6 is able to utilize the ocean response to the

tropical storm Ernesto from Sept 02-04. Glider #7 does not catch this weak

flow. Towards the end of the mission, both gliders are affected predominantly

by the tidal flow (see Fig. 4-9). The energy-optimal glider employs a higher

speed F(t) in this region and is thus able to spend less energy overall and still

reach the target at the same time as the time-optimal constant-speed glider. 162

4-9 Effect of tides on the paths of the energy-optimal gilder (#6) and the time-

optimal constant-speed glider (#7) in the last 27h: The nine panels show

3h average of the vertically-averaged horizontal flows (bottom color axis, in

cm/s) from 04-Sept 23 UTC to 06-Sept 02 UTC, with vectors indicating flow

direction. Each panel is a magnified region close to the target. Overlaid on

the flow are the paths of gliders #6 and #7 until the end time of each panel,

colored with their total effective vehicle-speed (right color axis, in cm/s). Both

gliders execute a spiral pattern. . . . . . . . . . . . . . . . . . . . . . . . . . 163
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4-10 Time series of the (a) ocean current magnitude, (b) instantaneous vehicle-

speed, (c) effective vehicle-speed, and (d) 24h moving average of effective

vehicle-speed for gliders #6 and #7. Glider #6 travels at a lower speed than

glider #7 initially, and thereby catches a strong favorable flow as a response of

storm Ernesto from Sept 02-04 (#6 in panel a). Glider #7 does not experience

this flow. On Sept 03, glider #6 switches to a higher speed (panel b) and

travels at an effective speed of upto 40 cm/s. From Sept 04 onwards, when

strong tidal flows dominate, glider #6 maintains higher relative speeds and

its effective speed goes only as low as 10 cm/s, whereas glider #7 has periods

with a near-zero effective speed (panel c). Panel c and d together show the

multiscale aspects of the effective vehicle-velocity. Instantaneous effective

speeds have a large intra day variability showing the effect of tides while the

24h moving average shows the effect of longer timescale circulations (order of

days). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4-11 Effect of tides on the paths of two constant-speed gilders with speeds 16.51

cm/s (#8 in gray) and 16.48 cm/s (#9 in black): The six panels show 3h

time-averages of the vertically-averaged horizontal flows (color axis in cm/s

to the bottom), from 03 UTC 06 Sept 2006 to 21 UTC 06 Sept 2006, with

vectors indicating the flow direction. Each panel is a magnified region close

to the target. Overlaid on the flows are the paths of gliders #8 in gray and

#9 in black, until the end time of each panel. Even though glider #9 is only

marginally slower, it takes nine more hours and consumes more energy than

glider #8. The energy requirement of both the gliders are given in Fig. 4-7a. . 165

4-12 As Fig. 4-7, but for energy-optimal path planning of gliders crossing the shelf-

break front from the coast of New Jersey. Longer duration gliders (#3-#6)

stay on the shelf during the ocean response to storm Ernesto and are ad-

vected southward by its ocean response. Gliders #1 and #2, however, cross

this region where the storm's response is intensified before it does intensify:

they are thus not much affected by the storm. . . . . . . . . . . . . . . . . . 166
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5-1 Schematic of stochastic time-optimal path planning setup: Our goal is to com-

pute the distribution of reachability fronts for vehicles starting from x., in

an uncertain flow field v(x, t; w), and the distribution of time-optimal paths

Xp(xs, t; w) to x1 . The effective velocity, U experienced by the vehicle is the

vector sum of the vehicle's forward motion F(t)h(t) and the background flow

V. .......... . .... .. ... ..................... ... ......185

5-2 Mean, Mode, and PDF of coefficient for the DO decomposition of the velocity

field used in Test Case 1: The zonal jet is from West to East between y = 40

and y = 60, and has an uncertain strength of uniform density distribution

with lower limit 0.5 and upper limit 1.5. The velocity is 0 elsewhere in the

domain. The start point is marked with a circular marker and three end

points with a star marker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5-3 Cumulative histogram of relative error in arrival-time (between DO and MC

solutions) for Test Case 1: 82.80% realizations have a relative error in arrival-

time (between the DO and MC solutions) of less than 0.0008 (0.1%), and the

maximum relative error across all realizations is 0.0024 (0.24%). This error

is negligible for the 4 orders of magnitude computational speed-up achieved

by the DO level-set method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5-4 Frechet distance (normalized) between reachability fronts computed by the MC

and DO methods for Test Case 1. The difference between the reachability

front computed by DO and MC increases with time, but always remains less

than the spatial resolution. The difference can be further reduced by in-

creasing the number of DO modes if the application requires higher precision.

Frechet distances are normalized by grid spacing . . . . . .. . . . . . . . . . . 186

5-5 Stochastic reachability fronts for Test Case 1: The reachability front for each

of the flow realizations is colored with the strength of that flow realization. . . 187

5-6 Stochastic time-optimal paths for Test Case 1: All time-optimal paths are

colored with the flow strength of the corresponding flow realization. The

variability of the time-optimal paths is greatest for the target point upstream

of the start point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
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5-7 Stochastic flow field for Test Case 2: The mean field and variance of the DO coefficients,

then the 5 DO mode fields and the marginal PDF of the corresponding DO coefficients of

the stochastic double-gyre flow field are shown at the beginning and end of the planning

horizon. Streamlines are overlaid on a color plot of the flow magnitude (color axis in cm/s)

for the DO mean and modes. The x- and y- axes have units of 1,000 km. Realizations can

be constructed by adding the mean to the sum of the product of each mode with a sample

from the PDF of the corresponding coefficient. . . . . . . . . . . . . . . . . . . . . . 188

5-8 Two realizations of the stochastic flow field for Test Case 2: Streamlines of the flow are

overlaid on a color plot of the flow magnitude. Realiz. #1 corresponds to the most negative

Coeff. 1 and realiz #5,000 to the most positive Coeff. 1. All such realizations are integrated

in time by one DO flow field simulation. . . . . . . . . . . . . . . . . . . . . . . . . 189

5-9 Stochastic reachability fronts for Test Case 2: The reachability front for each

of the flow realizations is colored with its corresponding velocity DO coefficient

1, Pi(t; w). Time t is in days, and x- and y- axes are in thousands of km. . . . 190

5-10 Stochastic time-optimal paths for Test Case 2: The time-optimal paths are

colored with (a) the velocity DO coefficient 1, p1i(t; w), and (b) the arrival

time (in days) at the target shown. x- and y- axes are in thousands of km. . . 191

5-11 Flow field for Test Case 3: Row A shows the DO mean flow, with streamlines

overlaid on colored vorticity. Row B shows the same for mode 1 and mode 2

fields. Row C shows the marginal PDF of coefficients 1 and 2. Row D shows

the decay in variance of the first eight modes. Each column is a snapshot, at

the time specified at the top. The starting point of the propelled vehicle is

indicated by a circular marker and the 6 targets by star markers. . . . . . . . 192

5-12 Two realizations of the stochastic flow field for Test Case 3: Streamlines are overlaid on

a color plot of vorticity. Realiz. #1 corresponds to the most negative Coeff. 1 while

realiz. #10,000 to the most positive Coeff. 1. All such realizations are integrated in time

by one DO flow field simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5-13 Stochastic reachability fronts for Test Case 3: In column A (B) the reachabil-

ity fronts are overlaid on the velocity streamlines of Mode 1 (2) and colored

by coefficient 1 (2). Rows i-vi are snapshots at the indicated times. Starting

point of the propelled vehicle is indicated by a circular marker and the six

possible targets by star markers. . . . . . . . . . . . . . . . . . . . . . . . . . 194
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5-14 Stochastic time-optimal paths for Test Case 3: Column A (B) has paths col-

ored by velocity coefficient 1 (2). Row i shows all paths to target 2, row ii to

target 5, and row iii to the other 4 targets. The x- and y- axes are in kms. 195

5-15 Arrival time distribution at each of the six targets for Test Case 3: The

distribution at targets 1 and 4, 2 and 5, and 3 and 6, are similar, respectively.

The distributions at targets 1 and 3, and targets 4 and 6 are almost mirror

images due to their symmetric spatial location north and south of the circular

island, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6-1 Schematic of minimum-risk time-optimal path planning setup: Our goal is

to compute the time-optimal path with minimum risk under uncertainty for

vehicles navigating from A-x, to B-xf in an uncertain flow field v(x, t; w).

The effective velocity, U experienced by the vehicle is the vector sum of the

vehicle's forward motion F(t)h(t) and the background flow V. . . . . . . . . . 212

6-2 Domain and the PDF of flow strength for the stochastic simulated front cross-

ing test case: (a) In a square domain of non-dimensional side lengths 100 x

100, an idealized stochastic steady front is modeled as a zonal-jet with uncer-

tain strength, flowing from west to east between y = 40 and y = 60. (b) The

PDF of the flow strength is a Gaussian Mixture Model with two Gaussians

with non-dimensional mean, standard deviation and mixture weight of (10,

3, 0.65) and (20, 1, 0.35) respectively . . . . . . . . . . . . . . . . . . . . . . . 212

6-3 Stochastic Reachability Front Evolution and Time-Optimal Path Distribution . 213

6-4 Computation of risk-optimal paths for waypoint guidance with full controlla-

bility for stochastic steady front crossing: Rows 1,2 and 3 correspond to step

111.3, III.4 and 111.5 respectively of Table. 4.1. Columns a,b,c correspond to

risk-seeking, risk-neutral and risk-averse behavior. To facilitate visualization,

the waypoint objective choices 1 have been sorted, in rows 1 and 2, by the

strength of the flow realization for which it is the exact time-optimal path. . . 214
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6-5 Risk-optimal waypoint objectives for stochastic steady front crossing: (a) The

risk-seeking, risk-neutral and risk-averse waypoint objective choices. (b) The

PDF of errors due to following the risk optimal paths. The error is quantified

as the discrete Frechet distance between the risk-optimal choice and the true

time-optimal path corresponding to the realized environment. . . . . . . . . . 215

6-6 Error visualization for waypoint objective risk-optimal choices: Each time-

optimal path is colored by the Frechet distance between it and the risk-optimal

choice. (a), (b) and (c) correspond to the risk-seeking, risk-neutral and risk-

averse choices. The PDF of these errors is shown in Fig. 6-5b. . . . . . . . . . 215

6-7 Risk-optimal heading objectives for stochastic steady front crossing: (a) The

risk-seeking, risk-neutral and risk-averse heading objective choices. (b) The

PDF of errors due to following the risk-optimal heading objectives. The error

is quantified as the discrete Frechet distance between the path obtained by fol-

lowing the risk-optimal choice and the true time-optimal path corresponding

to that realized environmental flow. . . . . . . . . . . . . . . . . . . . . . . . . 216

6-8 Path distribution due to following the risk-optimal heading objectives: Each

realized path corresponds to a particular flow realization and is colored by the

discrete Frechet distance between this path and the true time-optimal path

for that realized environmental flow. (a), (b) and (c) show the errors due to

following risk-seeking, risk-neutral and risk-averse choices. Fig. 6-7b shows

the PDF of these errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6-9 Stochastic wind-driven double gyre: The mean, standard deviation and skew-

ness of the velocity fields are shown in the first three rows. Perturbation from

the DO mean of two representative realizations are shown in the last two

rows. All fields are shown for three discrete times at the beginning, middle

and end of the planning horizon in each column. . . . . . . . . . . . . . . . . 217

6-10 Computation of risk-optimal paths for waypoint guidance in the stochastic

double gyre assuming full controllability: Rows 1,2 and 3 correspond to step

111.3, III.4 and 111.5 respectively of Table. 6.1. Columns a,b,c correspond to

risk-seeking, risk-neutral and risk-averse behavior. To facilitate visualization,

the waypoint objective choices 1 have been sorted, in rows 1 and 2, by the

velocity DO Coefficient 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
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6-11 Risk-optimal paths in the stochastic double gyre flow field: (a) The risk-

seeking, risk-neutral and risk-averse waypoint objective choices. (b) The PDF

of errors due to following the risk optimal paths. The error is quantified as

the discrete Frechet distance between the risk-optimal choice and the true

time-optimal path corresponding to the realized environment. . . . . . . . . . 218

6-12 Error visualization for waypoint objective risk-optimal choices: Each time-

optimal path is colored by the Frechet distance between it and the risk-optimal

choice. (a), (b) and (c) correspond to the risk-seeking, risk-neutral and risk-

averse choices. The PDF of these errors is shown in Fig. 6-11b. . . . . . . . . 219

6-13 Risk-optimal heading objectives in the stochastic double gyre flow field: (a)

The risk-seeking, risk-neutral and risk-averse heading objective choices. (b)

The PDF of errors due to following the risk-optimal heading objectives. The

error is quantified as the discrete Frechet distance between the path obtained

by following the risk-optimal choice and the true time-optimal path corre-

sponding to that realized environmental flow. . . . . . . . . . . . . . . . . . . 219

6-14 Path distribution due to following the risk-optimal heading objectives: Each

realized path corresponds to a particular flow realization and is colored by the

discrete Frechet distance between this path and the true time-optimal path

for that realized environmental flow. (a), (b) and (c) show the errors due to

following risk-seeking, risk-neutral and risk-averse choices. Fig. 6-13b shows

the PDF of these errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6-15 Stochastic flow exiting a strait: Mean, Mode#1,#2,#3, Coeff. #1,#2,#3 are

shown at three discrete times at the beginning, middle and end of the planning

horizon. The mean and modes velocity streamlines are overlaid on a colorplot

of their magnitude. The coefficients are shown by their marginal PDF. . .. . 221

6-16 Statistics and representative realizations of the stochastic flow exiting a strait:

The standard deviation, skewness and kurtosis of the velocity fields are shown

in the first three rows. Two representative realizations are shown in the last

two rows. All fields are shown for three discrete times at the beginning, middle

and end of the planning horizon in each column. . . . . . . . . . . . . . . . . 222

24



6-17 Stochastic reachability front evolution colored by DO velocity coeff. # 1. The

reachability fronts are computed by one DO simulation by solving the stochas-

tic DO level set equations with the above stochastic DO velocity fields for the

stochastic flow exiting a strait. . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6-18 Time-optimal path distribution colored by arrival time in mins The distribu-

tion of exact time-optimal paths are computed from the stochastic reachability

fronts using the stochastic back tracking equation. . . . . . . . . . . . . . . . 223

6-19 Risk-optimal paths with waypoint objectives in the stochastic flow exiting a

strait: (a)-(e) correspond to the five target locations. Column 1 shows the

risk-seeking, risk-neutral and risk-averse waypoint objective choices. Column

2 shows the PDF of errors due to following the risk optimal paths. The error

is quantified as the discrete Frechet distance between the risk-optimal choice

and the true time-optimal path corresponding to the realized environment. . . 224

6-20 Risk-optimal heading objectives in the stochastic flow exiting a strait: Rows

(a)-(e) correspond to the five targets. Column 1 shows the risk-seeking, risk-

neutral and risk-averse heading objective choices, and column 2 shows the
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Chapter 1

Motivation and Thesis Outline

"Conserve and sustainably use the oceans, seas and marine resources for sustainable devel-

opment" reads the Sustainable Development Goal No. 14 defined by the United Nations

in Transforming our World - the 2030 agenda for sustainable development. The oceans

not only contribute to climate, carbon sequestration, habitat, and biodiversity, but also are

key economic drivers in eradicating poverty as they affect many economic sectors including

coastal management, fisheries, energy, tourism, conservation, shipping, security and marine

operations. Currently about 40% of the world's population lives in coastal areas (United

Nations, 2015), and over 3 billion people depend directly on marine resources for livelihoods

and decent work. However, the returns from these resources are diminishing due to environ-

mental degradation, over-exploitation and climate variability. To successfully coexist with

the ocean and optimally utilize and manage marine resources, it is important to monitor

and forecast coastal oceans, including the impact of human activities (Lermusiaux et al.,

2006). In order to explain the dynamics and make forecasts, ocean scientists utilize models

formulated from observations and conservation laws. However, it is challenging to observe

the ocean on a sustained basis and to transform basic physical laws into usable predictive

models. Imperfections in both data and model estimates introduce several sources of uncer-

tainties (Lermusiaux, 2006; Lermusiaux et al., 2006). For example, the multivariate ocean

data are often gappy and sparse with spatial and temporal heterogeneity. Moreover, their

statistics is non-stationary and mostly non-Gaussian (Lermusiaux, 1999b). The multidisci-

plinary, multiscale and nonlinear dynamics of interest in oceans are governed by PDEs with

associated initial conditions, boundary conditions, forcing and parameters (Cushman-Roisin
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and Beckers, 2011). Due to the limited measurements, there are multiple sources of uncer-

tainties in all of the above and even the model parameterizations and equations themselves

(Lermusiaux, 2006).

Therefore, there is an urgent need to rigorously quantify uncertainties and make funda-

mental probabilistic predictions, in accord with the complexities of the nonlinear governing

equations and non-stationary non-Gaussian statistics.

Simultaneously, persistent long-duration observation networks with autonomous plat-

forms are being deployed around the world to sample the oceans and reduce uncertainties.

Autonomous underwater vehicles including propelled vehicles, gliders, and surface crafts

are increasingly used in ocean sampling and exploration activities such as oil and gas ex-

ploration, ocean floor mapping, search and rescue, security, and coastal and global ocean

monitoring, conservation and forecasting (Stommel, 1989; Bachmayer et al., 2004; Belling-

ham and Rajan, 2007). For coupled sampling and exploration missions (e.g. Bhatta et al.,

2005; Curtin and Bellingham, 2009; Bahr et al., 2009; Ramp et al., 2009; Haley et al., 2009;

Leonard et al., 2010; Schofield et al., 2010), long endurance, low energy cost and minimizing

operational risks are crucial requirements. Specifically, there is a need to increase the capa-

bility of vehicles to operate for long periods of time at sea, often either by developing more

efficient power supplies (Bellingham and Rajan, 2007) or by utilizing the environment to

reduce energy consumption (Webb et al., 2001). As the vehicles are advected by the uncer-

tain, strong and dynamic currents, rigorously evaluating and minimizing risks of missions is

critical for safe and optimal operations. Similar needs arise in other applications where the

environment can play a significant role such as in the navigation of drones, airplanes, land

robots etc.

Such rigorous probabilistic field and path predictions are not only important for the

above needs, they also open up several new avenues for the advancement of ocean sciences.

For example, they can serve as the foundation for stochastic dynamical analysis, Lagrangian

and Eulerian Bayesian data assimilation with non-gaussian filters and smoothers, model

learning and discovery, and adaptive sampling.

With better estimates of the coastal ocean states with quantified uncertainty, arise new

or improved economic and societal applications. For example, they can be utilized for

monitoring and predicting the coastal ocean states and health of ecosystems. Such predictive

tools could serve as technical decision aides to inform policy about sustainable fisheries
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management, coastal zone regulation, marine pollution, tourism, and marine industries such

as oil and gas and deep-sea mining. The availability of the joint probability distributions of

predicted and inferred ocean quantities enable hedging and risk management. Optimal path

predictions with quantified risk open possibilities of efficient shipping routing that reduces

fuel consumption and green-house gas emissions.

With the above motivation, in the present thesis, our goal is to develop the capabilities for

probabilistic regional ocean predictions and optimal path planning by utilizing fundamental

stochastic Partial Differential Equations (PDEs) and their efficient dynamically orthogonal

counterparts. First, we develop the theory, numerical schemes, and efficient computational

systems for Dynamically Orthogonal (DO) ocean primitive-equations. We then apply these

systems to simulate idealized-to-realistic stochastic regional ocean dynamics. Second, we

further develop and apply our stochastic DO level-set equations with uncertain vehicle speeds

and uncertain currents. The former is used in our stochastic DO level-set optimization for

energy-optimal path planning of gliders in realistic coastal ocean flows. The latter is used for

predicting stochastic reachability and time-optimal paths, and for computing risk-optimal

paths of autonomous vehicles navigating in uncertain, strong and dynamic flows.

1.1 Outline of Thesis and Summary of Chapters

The contributions of this thesis can be categorized into two broad segments: (i) chapters

2 and 3 describe the results in probabilistic regional ocean predictions with stochastic dy-

namically orthogonal ocean primitive equations, and (ii) chapters 4, 5 and 6 describe the

results in fundamental optimal planning with stochastic dynamically orthogonal level set

equations. Each chapter is intended to be a complete standalone reading.

Probabilistic PDE-based Regional Ocean Predictions:

In Chapter 2, we develop and present the theory and numerical schemes for dynam-

ically orthogonal primitive equations. First, the stochastic ocean primitive equations are

presented. Then, new methodological and computational questions for obtaining and im-

plementing discrete dynamically orthogonal ocean primitive equations are identified. The

theoretical developments necessary to answer these questions are completed. Next, the

continuous and discrete dynamically orthogonal mean, mode and coefficient equations are

provided. Finally, we describe the details of our efficient serial implementation.

31



In Chapter 3, we apply the newly developed schemes and software to predict the 4-D

probabilities of idealized-to-realistic ocean dynamics. For the idealized simulations, we show

the evolution of an initial uncertainty in temperature and salinity in a flat bottom 100 km x

100 km x 1 km ocean without tidal and atmopsheric forcing. For the realistic simulations, we

consider three scenarios: (i) the Middle Atlantic Bight region from Sept 1 to Sept 10, 2006;

(ii) an area in the North Atlantic including the New York Bight, the shelf and the Sargasso

Sea in February 2017 and (iii) Region around the Lakshadweep Islands in the Arabian Sea

in Sept/Nov 2017.

Fundamental Optimal Planning

In Chapter 4, we integrate data-driven ocean modeling with the stochastic Dynamically

Orthogonal (DO) level-set optimization methodology to compute and study energy-optimal

paths, speeds, and headings for ocean vehicles in the Middle-Atlantic Bight (MAB) region.

We analyze the effects of the regional tidal currents, strong wind events, coastal jets, shelf-

break front, and other local circulations on the energy-optimal paths. This chapter has been

published as Subramani et al. (2017a).

In Chapter 5, we present and apply S-PDEs governing reachability and time-optimality

in uncertain, dynamic, strong flows. We derived efficient stochastic DO level-set equations

for accurate and fast computation and applied these to a stochastic front, double-gyre quasi

geostrophic flow, and flow past an island. A rigorous framework to quantify sensitivity of

time-optimal paths to forecast errors is developed. This chapter is the subject of Subramani

et al. (2017c).

In Chapter 6, we combine decision theory and stochastic time-optimal path planning

to develop novel schemes for risk-optimal path planning in uncertain, strong and dynamic

flows. The schemes are exemplified with applications to the test cases of chapter 5, and a

stochastic flow exiting a strait/estuary on to a narrow channel. This chapter is the basis for

the manuscript Subramani and Lermusiaux (2017).

In Chapter 7, we provide a short report of additional collaborative work undertaken

(ship routing and real-time sea exercises for demonstrating time-optimal path planning),

concluding remarks and future research directions.
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Chapter 2

Dynamically Orthogonal Ocean

Primitive Equations

2.1 Introduction

The ocean primitive equations (PEs; eq. A.1-A.7) along with appropriate initial and bound-

ary conditions describe the hydrostatic and Boussinesq physics in a stratified, rotating and

thin ocean (e.g., Cushman-Roisin and Beckers, 2011). The PEs with uncertain initial con-

ditions, boundary conditions and/or forcing terms can be expressed as stochastic partial

differential equations (S-PDEs). Efficient solution methods for these S-PDEs is a defining

challenge in the field of probabilistic regional ocean prediction. Traditionally Monte Carlo

methods (Doucet et al., 2001) and ensemble predictions (Evensen, 1994) have been utilized

to solve these S-PDEs. However, coastal ocean states in typical applications have large

dimensionality and Monte Carlo methods require a high number of realizations to achieve

convergence, thereby rendering them computationally intractable and memory intensive.

Fortunately, the nonlinearities in the governing equations tend to "concentrate" the dom-

inant uncertainties to live in a low-dimensional stochastic subspace (Lermusiaux, 1999b;

Lermusiaux, 2007), allowing for their efficient representation and evolution. The DO field

equations (Sapsis and Lermusiaux, 2009, 2012) evolve this stochastic subspace through dy-

namic coefficients and modes that shadow the dominant uncertainties of the original system

of equations and forcing. The adaptive subspace and evolution equations are such that

instantaneously the subspace is the variance-optimal reduced order representation of the
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full 4-D dynamic uncertainty (Feppon and Lermusiaux, 2017b). Thus, the DO method is

computationally tractable and requires less memory making it an attractive candidate for

probabilistic prediction of coastal ocean states. Typically the DO equations provide 3- to 4-

orders of magnitude computational speed-up compared to the classic ensemble/Monte Carlo

methods for varied applications (Ueckermann et al., 2013; Subramani and Lermusiaux, 2016).

For a description of the relative pros and cons of DO and PC for autonomous dynamical

system, we refer to Phadnis (2013). Consequently, we employ the DO methodology.

Next, we present the stochastic primitive equations and outline the arrangement of the

text to follow.

2.1.1 Stochastic Ocean Primitive Equations with a Free Surface

Let us consider a domain D and denote the spatial variables as x = [x, y, z], time as t, and

an instance of the random field of a physical variable, e.g., temperature, as T(x, t; w), where

w is a random event in the sample space Q with an associated probability P. Then, the

stochastic ocean PEs with a free-surface can be expressed as

Cons. Mass

Cons. Horiz. Mom.

u(x, t; W) + = 0 , (2.1)

au(x, t; W)
xt + fk x u(x, t; w) =-V ([u(x, t; w) w(x, t; w)]u(x, t; w))

1
-- Vp(x, t; w) + F(x, t; w) , (2.2)

Po

Cons. Vert. Mom. x -p(x, t;t;)g,

OT(x, t; w)
Cons. Heat t -V- ([u(x, t; w) w(x, t; w)]T(x, t; w))

+Tr (x, t; W) ,
+S(x, t; W)

Cons. Salt at = - V - ([u(x, t; w) w(x, t; w)]S(x, t; w))

+Fs(x, t; w) ,

Eq. of State

Free Surface

p(x, t; o) = p(z, T(x, t; w), S(x, t; w)) ,

7 (Xyt;wLo) + V -(jr(x'J t;w) u(x, t; w) dz =0,
at _H

where u is the horizontal velocity vector, w is the vertical velocity, p is the pressure, f is the

Coriolis parameter, p is the density, po is the (constant) density from a reference state, g is

the acceleration due to gravity, and k is the unit direction vector in the vertical direction.
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The divergence operator, V-, in Eqs. 2.1 is a 2D (horizontal) operator. The uncertain bottom

and coastal friction, sponge layers, and the turbulent sub-gridscale processes included in F,

.FT, and Fs. Specifically, the stochastic version of the terms in our MSEAS deterministic

ocean modeling system (Haley and Lermusiaux, 2010, 2016) are

.F~(~tw O u(x, t;w)\ Aspng(x)
u (X, t; W) = X + spong (usponge (X, t; w) - u(x, t; W))OZ 0Z Tosponge

ct(x) + Abot (X) u(x, t; w) + Fu, (2.8)
\Tcst Tbot /

FT (x, t; w) = a KTS OT(t;w)) + %onge X (Tsponge (x, t; w) - T(x, t; w))

+ Tsrc(x, t; w) + FT , (2.9)

&(TS OS(X, t;W)" sponge (X)_.Fs(x,t;w) = OZ ( OZ + Trpsone (Ssponge (x, t; w) - S(x, t; W))

+ Ssrc(x, t; w) + FS , (2.10)

where A is the spatial de-correlation length scale corresponding to the subscript, T is the

temporal de-correlation time scale corresponding to the subscript, r, is the vertical mixing

coefficient, T and S are the source terms for temperature and salinity respectively, and

Fu, FT, FS are the horizontal numerical shapiro filtering operators for the velocity, temper-

ature, and salinity fields respectively.

The initial and boundary conditions are given by

u(x, 0; W) = uo(x; W) , (2.11)

T(x, 0; w) = To(x; w), (2.12)

S(x, 0; w) = So(x; w) , (2.13)

j(x, y, 0; w) = go(x, y; w) , (2.14)

bu(u(xI 6, t; w)) = Bu(w) , (2.15)

bT (T(x5D, t; w)) = BT (w), (2.16)

bs(S(xI 6-, t; w)) = Bs(w) , (2.17)

b, (n(x 1-, t; w)) = Bn (w) , (2.18)

where uO, To, So, 77 are the initial conditions of the velocity, temperature, salinity, and free-
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surface fields, and b and B are appropriate boundary condition options for open boundaries,

coastlines, surface and bottom.

Following Haley and Lermusiaux (2010), we split the horizontal velocity into a depth

averaged component U and a remainder u', i.e.,

1 F7

u = U/ + U; U = H 1 udz, (2.19)
H + 77 -H

and we split the pressure into a hydrostatic component Ph and a free surface component ps,

i.e.,
0

P =Ph +Ps Ph = fpg d ; ps = pgrj. (2.20)

Using eq. 2.19 and eq. 2.20 we obtain a separate PDE for the barotropic component U by

integrating the horizontal momentum eq. 2.2 vertically:

a + a+ f k x U = F - g7, (2.21)
at H + ?at

where F is the vertical integral of all the other terms in eq. 2.2. Solving this additional

PDE enables us to reduce the time splitting error in the time-splitting schemes (Haley and

Lermusiaux, 2010).

2.1.2 Outline

In what follows, we first list the new methodological questions that must be answered for

deriving the Dynamically Orthogonal Primitive Equations. Next, we address each ques-

tion individually. Finally, we provide the Dynamically Orthogonal Primitive Equations.

The generic DO equations, notation and definitions follow published literature (Sapsis and

Lermusiaux, 2009) and are summarized in the Appendix B.

2.2 New Methodological Questions for Dynamically Orthogo-

nal Primitive Equations

Compared to the dynamically orthogonal equations derived for other stochastic dynami-

cal systems (Ueckermann et al., 2013; Subramani and Lermusiaux, 2016; Sroka, 2016; Lin

et al., 2018), the stochastic ocean primitive equations have additional issues arising due
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to the multivariate state vector, 3-D spatial norm choices, time-dependent domain due to

the dynamic free-surface, and different non-polynomial nonlinearities. Specifically, the new

methodological questions are as follows.

1. What are the prognostic variables, i.e., state variables, and diagnostic variables?

Should the barotropic, baroclinic and total velocity variables all be considered prog-

nostic? What are the relationships of diagnostic variables to the prognostic variables?

2. What are appropriate DO norms? Should the state vector be weighted by volumes, or

not?

3. What is the appropriate DO condition that ensures dynamic orthogonality for time-

dependent domains?

4. How to handle the non-polynomial nonlinearities in equation of state and free-surface

equations?

2.2.1 Multivariate State Vector, Prognostic and Diagnostic Variables

In the stochastic ocean PEs (eq. 2.1-2.7), there are explicit rate of change terms for four

variables: u, 7, T, S. However, for numerical ocean models, the momentum equations can be

re-written by splitting the total velocity into a barotropic and a baroclinic component and

deriving separate barotropic momentum and baroclinic or full momentum PDEs, e.g. Haley

and Lermusiaux (2010). There are then explicit rate of change terms for five variables:

u, U, n, T, S.

Thus, we have two choices for the multivariate state vector 7b to be utilized for uncertainty

representation and propagation in the DO methodology: 4' = [u 77T S]' or 4 = [u U 7 T S]'.

Since the barotropic velocities are simply a vertical integral of the total velocity, they do

not add any new information not already contained in u. Hence, we adopt the first choice

of state vector with the 3-d horizontal velocities, the 2-d free-surface height, and the 3-d

tracer fields (temperature and salinity).

For this state vector, we introduce the DO decomposition

(x, t; W) = _(x, t) + #i (t; w)4'i(x, t) , (2.22)
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where the multivariate DO modes are orthonormal, i.e.,

(x, t; W), 0 (X, t; W)) = 6ij V (Z, j), (2.23)

and the vector space {j}7' spanned by the DO modes is a lower dimensional stochastic

subspace that describes almost all of the principal uncertainty (say ideally 99%) in the

multivariate DO state.

The inner-product operator (., e) is defined as follows. For any two vectors ;i and 4j,

K (x, t), e(xt) = I 1(x, t)T A- j (x, t) dW (2.24)

Diagnostic Variables

The PEs contain variables that do not have an explicit rate of change term such as density

(and hence hydrostatic pressure) and vertical velocity. These terms are diagnostic, i.e.,

they are computed from the prognostic terms by application of appropriate algebraic or

differential equations. The DO modes for these diagnostic terms will also be computed

through the same equations. Note that these derived DO modes need not be orthogonal, and

the orthonormality properties of these diagnostic mode terms are not utilized in obtaining

the DO-PE equations. The density term needs special treatment due to the nonlinear nature

of the state equation (Sec. 2.2.4)

Vertical velocity

Du Dv Dw
&+ 4+ w= 0, (2.25)49X ay az

D(u + o5iii) a(v + ii) a(i + oihi)
DX + y + z = 0, (2.26)

0fV aii av
= - - + (2.27)

- =- - +DY (2.28)
Dz Dx B

2.2.2 Norm choices for the DO decomposition of the state vector

The state vector 4' is decomposed into its DO mean, modes, and coefficients such that the

the DO modes are orthonormal under some norm (eq. 2.23 see also Appendix B). The
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choice of the norm (i.e., A- 1 in eq. 2.24) is crucial for efficient dimensionality reduction

while accurately resolving important features in all the variables in a multivariate joint

state vector. For example, on the one hand, each ocean field u, v, 71, T, S might each require,

say, 100, 100, 20, 200, 200 modes respectively for describing 99% of the variability. While on

the other hand, choosing a state vector P = [u 17 T S]T might require, say, only 160 modes for

describing 99% of the variability. However, the typical variability (i.e., standard deviation)

in each field might be u - 40 cm/s, T ~1" C, S e 0.3 psu and 7 ~ 10 cm. As such, without

normalization, in a subspace representation of this joint multivariate state vector, the small

scale variability of T and S, which originally required 200 modes each might be lost.

To resolve the multiscale variabilities in the multivariate joint state vector, we must

normalize each variable with its standard deviation. If dx is not uniform in space, the

spatial integral in the norm computation will place higher weight on the variability in places

where dx is larger. However, in practice, the discretization in ocean modeling systems tend

to be such that areas with high variability are more finely discretized (thus smaller dx).

Hence, A- 1 must also account for this property of the discretization by weighting with the

inverse of dx.

Overall, the choice of A- depends on the anticipated uncertainty and variability of the

different components of the state variable. In practice, it can be a heuristic choice made on

the basis of the experience of the modeler and of the expected uncertainties (Lermusiaux and

Robinson, 1999; Lermusiaux, 1999b, 2001; Lermusiaux, 2007). If there is sufficiently large

number of modes, then the choice of A- 1 has a limited effect on the uncertainty predictions.

However, when the number of modes is small or barely sufficient to represent the dominant

uncertainties, a correct normalization is critical.

Thus, one choice of A- 1 is

- -1

o"dx 0 0 0

0 2 dx 0 0
A-' = 2 0(2.29)

0 0 jdx 0

0 0 0 aSdx
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2.2.3 DO condition for time-dependent domains

In the DO methodology, the basis of the subspace should maintain the property of dynam-

ical orthonormality, i.e., the modes evolve in time such that they remain instantaneously

orthonormal under a predefined norm (Sec. 2.2.2). For any 2 modes 4i and 4 j, we want

' )= 6 ij V t

/( jA-' )dD +
a t

A- dD +

a
j

,D
( jA-1 j)) g, - d6D = 0 ,

A-'2A dD+ ( iA-'
Tat '

+ + ( ,A-' ,)do6 - d6D = 0atb

dJD = 0 ,

V (i, j).

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

Here, i3D is the velocity of 6D. We need an explicit condition on (?P, at

By definition 2.24, the inner-product is commutative for symmetric norm A and we can

easily show that , D) = K', ii). For i j, eq. 2.34 leads to

Kat,+ i ( iAU4)iD - d6D =0

For i # j, let us consider a to-be-determined scalar a and write

K ai

6V

ID

(iA-1)6,)D, d6D = 0

( iA'j)63D- d6D = 0

V (i, j),

V (i,j),

(2.35)

(2.36)

which together satisfy eq. 2.34 without loss of generality. By re-arranging eqs. 2.35 and

2.36, flipping i and j, we obtain the condition

1 Kat , V (i, j) . (2.37)
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Next, let us interchange ij in eq. 2.37 to obtain

Kj -- = -l @ (2.38)
at I -a at'

and thus, for the commutative inner-product,

8@ ~ a ~__@K @ = -. (2.39)at 1- a at

Substitute eq. 2.39 in eq 2.37 to obtain

-a2  (2.40)

-> a = 1 (2.41)
2

Thus we obtain the modified DO condition for a time-dependent domain D,

K j + - ( kA-1'j)i6D. d6D = 0 V (i, j), (2.42)
at 2 g

required for maintaining instantaneous orthonormality of the evolving DO subspace. We

could arrive at the same result by simple symmetry considerations also. If the domain D

is static, i.e., udD = 0, then eq. 2.42 reduces to the classic DO condition , 71 = 0

derived in Sapsis and Lermusiaux (2009). The modified DO condition eq. 2.42 satisfies eq.

2.34 and thus maintains the modes dynamically orthogonal.

2.2.4 Non-polynomial nonlinearities

The key non-polynomial nonlinearities in the free-surface stochastic primitive equations are

the density term, free-surface term and any source and sink terms in the tracer equations.

Here, we describe how we tackle the density and free-surface terms.

Density

The gradient of the hydrostatic pressure drives ocean flows (Pedlosky, 1998; Cushman-Roisin

and Beckers, 2011). The hydrostatic pressure is set by the density of sea water, which in

turn is set by the local temperature and salinity. The latter relationship is governed by the
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thermodynamic equation of state

p = p(T, S,p). (2.43)

Applying the DO decomposition to the above equation, we have,

p + 0j;5= p(T + iTi, S + 4oS4, p) (2.44)

(p(), , p) + 0j5; + (Ti , (2.45)
T ,9,p) ad(T,S,p)

where the nonlinear function p has been Taylor expanded around (T, S, p) for small pertur-

bations. Hence the mean and modes of density can be expressed as

= p(T, S, p) (2.46)

; T (,,) aS (2.47)

Utilizing the thermodynamic equation of state for seawater (e.g., EOS-80, Gibbs 2010), the

derivatives of density with respect to temperature (the thermal expansion coefficient, a)

and salinity (the salinity contraction coefficient, 3) can be computed. This approach is the

same as the Taylor-Gamma approach developed for handling non-polynomial nonlinearity

in level-set equations, biology source terms, etc. (Subramani and Lermusiaux, 2016; Gupta

et al., 2015).

Hydrostatic Pressure. At a depth z, the horizontal forces due to hydrostatic pressure

gradient force is given by

VPA = -V ( gpz dz) , (2.48)

V(P- + O3;) = -V (j g(1i + Ojj;)z dz) . (2.49)

Hence the DO mean and modes of the gradient of the hydrostatic pressure are given by

VP7 = -V gp
z dz , (2.50)

V5i = -V (JZgiz dz) . (2.51)
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Free-surface equation

The free-surface equation 2.7, has a term containing the divergence of the barotropic trans-

port, i.e., V.- (f'(Yt;w) u(x, t; w) dz). This term requires a special treatment as the upper

limit of the integral is stochastic. We apply the following approximation to handle this term.

The free-surface height is dominated by the barotropic tides. Also, the variability in

free-surface is dominated by the variability in the barotropic tides (in coastal oceans) and

the uncertainty on the latter is small compared to the mean of the barotropic free-surface.

Mathematically,

7lsub-tidal << laro-tides , (2.52)

lbaro-tides ' jbaro-tides (2.53)

Hence we have,

V (f udz ~V. u dz . (2.54)
H -fH

In regions where eq. 2.54 is not accurate, we treat that term similar to other non-polynomial

nonlinearities, e.g., by polynomializing utilizing a Taylor expansion.

On a similar reasoning, we can neglect the free surface component of the DO modes in

the nonlinear terms in eq. 2.21 to obtain

O u - +fk xU=F-gVq, (2.55)
Ot H +i; &t

2.3 Continuous Dynamically Orthogonal Primitive Equations

We provide a generic derivation of the DO equations in Appendix B. There, eq. B.26,

B.30 and B.33 together constitute the DO equations for the S-PDE B.21. We will use this

template and the PEs 2.1-2.7 to derive the DO-PEs, and only present the final results here.

2.3.1 DO Mean Equations

With appropriate initial and boundary conditions on the mean quantities, the DO mean

ocean primitive equations can be written as follows:

V - u + = 0 ,(2.56)
V + z
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2.4 New Computational Questions for Dynamically Orthogo-

nal Primitive Equations

Our next step is to derive the discrete equations of the above developed dynamically orthog-

onal ocean primitive equations with a free-surface. The coupling between the DO equations,

momentum and free-surface equations, and the time-dependent spatial discretization needed

to handle the moving free-surface give rise to new computational questions. These are as

follows.

1. How best to decouple the mean, mode and coefficient equations numerically?

2. What are the appropriate time-splitting schemes for the momentum and free-surface

modes and coefficient equations?

3. How will the computational grid respond to the stochastic free-surface?

4. How to perform a numerical re-orthonormalization consistent with leap-frog time step-

ping?

5. Are the DO schemes numerically consistent with deterministic schemes?

2.5 Discretization of the DO Mean and Mode PDEs

Now, we develop the numerical schemes for our DO-PEs, answering the above questions

along the way.
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2.5.1 DO Mean-Mode-Coefficient Decoupling

Decoupling of the modes and coefficients is achieved by treating some terms explicitly, follow-

ing Ueckermann et al. (2013). Specifically, we treat the following explicitly: (i) covariance

and third moment terms C4tom2 and A1m0.+.0 in the mode equations, and (ii) the projections

in the coefficient equation K, ;). The mean equation is coupled with the mode equation

through the nonlinear terms (e.g., the quadratic advection term). Here, the decoupling is

achieved by evaluating these nonlinear terms explicitly as commonly done in the ocean and

atmospheric modeling communities (e.g., Haley and Lermusiaux, 2010).

2.5.2 Control Volume Formulation

We employ a conservative finite volume method to solve the DO-PEs. To derive the discrete

equations, we first rewrite the DO mean PDEs ( eqs. 2.56,2.57,2.61,2.62) and the DO mode

PDEs (eqs. 2.67,2.68,2.72,2.73) in their conservative integral form. Such a formulation also

allows to easily derive a discrete system of equations that correctly capture the temporal

changes in the ocean volume due to the moving free surface (Haley and Lermusiaux, 2010).

DO Mean Equation

a ji dV)

a
T dV)

s(u, i) - dA = 0, 
(2.79)

-O (K9Z) + f x j dV= -j (i, ) idA - Col, ( (iii, i)iim dA)

1jplh - dA - gV + jf dV, (2.80)

+V. - H ) =0, (281)

k -TSa) (ji)TdA-C ( iio o iii)mTdA + PTdV,

(2.82)

j dV) - + = (u, w))9 dAC m ( , 7)Sm dA + j s dV,

(2.83)
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2.5.3 Temporal Discretization

We now develop the semi-implicit time splitting numerical schemes for our DO-PEs with a

free-surface. We utilize the following discrete time notation:

tn = not ; b(tn) = b",

where At is the discrete time step, and employ second order leap frog time differencing,

denoting the difference operator:

6v = bn+1 - bn-1. (2.95)

For the semi-implicit time discretization (e.g., Coriolis, vertical mixing, and barotropic con-

tinuity), we use the following notation:

= ln+ + (1 - 2a )V" + a@/- , (2.96)

O - 0bn+1 + (1 - 0)@" . (2.97)

DO Mean Equation
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In the MSEAS Primitive Equation deterministic modeling system, stabilizing choices of

- and 0 1 are commonly utilized (Haley and Lermusiaux, 2010). The DO mean

momentum eq. 2.99 and DO mean free-surface eq. 2.100, and the DO mode momentum

eq. 2.107 and DO mode free-surface eq. 2.108 are coupled. We need efficient time-splitting

procedures to decouple these equations and solve them. Next, we develop such a time-

splitting procedure.

3.3.2.1 Time-Splitting Procedure

DO Mean Equation We introduce a DO mean splitting variable,

n+1 n+1

/J dV u dV) + ar (J gV dV) , (2.114)

U U + aTgV 7, (2.115)

We also employ the following notation,

6v = bn+l _ n-1 (2.116)

= (1 - 2a)V n + 2a0-1 (2.117)

Substituting eq. 2.114 in eq. 2.99 we get

a/ (K a (fV f dV))+ T(fCnCn

ji dv -ar r6 V +x dV = -T ( , )n dA
v az az f V sn

- (Cs (iimn 7m) dinA - T- (Jf hh- dA)

n a 
T ( (f i dV))

+ IF IVYu dV _ 7 (gV ) + T z 9Z

+ a2 26 (fX fj gV dV) (2.118)

To complete the decoupling, we take the average of eq. 2.100 at time step n and n - 1, to

obtain

2 -- + V. [(H + n) (OU" + Un + (1 - O)U = 0, (2.119)
T
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and substitute eq. 2.115 to obtain

aOTgV - [(H + i")Voi] -

DO Mode Equations

2
7-

= H " -n $
=V. [(H + 4n) (OU

We introduce a DO mode splitting variable,

I /ii dV
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( jidv + aT (j gV4 dV) (2.121)

(2.122)

Substituting eq. 2.121 in eq. 2.107 we get
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To complete the decoupling, we take the average of eq. 2.108 at time step n and n - 1, to

obtain

2 L+V - [(H + ,n) (OU+1 + Ujn + (1 - ,)UV- = - C
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2.5.4 Time-dependent Distributed-- Spatial Discretization of the Free-

surface DO-PEs

We adopt the time-dependent structured grid finite volume spatial discretization scheme

of the MSEAS deterministic primitive equation ocean modeling system. We employ the

staggered Arakawa-B grid in the horizontal and a generalized terrain following a--coordinate

system for the vertical. The change in the volume of the water column due to the DO mean

free-surface height is distributed with depth at every time-step. We ignore the variability of

the volume of the water column due to the free-surface component of the DO modes as its

contribution is negligible (see eq. 2.52 and eq. 2.53).

The time dependent height along model level k is related to the (undisturbed) sea level

zMS and the free surface height by the relation

Zk(X,y,t) =n(Xyt) + 1 + ZMSL (XY) (2.126)
H (x, y))k

and the time dependent finite volume is related to the finite volume at the undisturbed mean

sea level by the relation

jk - (X, y, t)
AVMSL H(x, y) (2.127)

A consequence of the fact that we have a terrain following time dependent vertical grid, the

vertical flux velocity of the finite volume, w', is related to the true vertical velocity w and

the normal to the top of the finite volumes as

' = w - u - (2.128)

and the DO mean and mode of the vertical flux velocity is related to the DO mean and

mode of the true vertical velocity as

fV' =,C ii--n V - ,t (2.129)
--.

Wi W ji - V . (2.130)
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To discretize all the DO-PE PDEs, we use a second order mid-point approximation

(2.131)I dV = OAV.

2.5.5 Discrete DO Mean Ocean Primitive Equations

The discrete update equations for the DO mean velocities, free-surface, temperature and

salinity are as follows:
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2.5.6 Discrete DO Mode Ocean Primitive Equations

Similarly the discrete update equations for the DO modes of the prognostic variables are:
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2.6 Discretization of the Coefficient Equations

The coefficient equations are ODEs with their RHS being the spatial inner product of the

dynamics on the DO modes. We descritize this ODE by evaluating the RHS as a Riemann

integral at time step n and employing a leapfrog time discretization for the LHS.
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2.7 Numerical Re-orthonormalization

The DO primitive equations enforce orthonormality of the DO modes, however the numerical

schemes for time stepping maintain this property numerically only up to an order At smaller

than that of the numerical schemes for the modes and coefficients (Ueckermann et al., 2013).

Hence, a numerical re-orthonormalization procedure that is consistent with the leap frog time

stepping scheme is required to numerically enforce orthonormality of the DO modes at all

time steps.

Consider the matrix of DO modes 4' = [in+1, 1, ,.. ,g+1 and DO coefficients

S=[#/n+1, ~+1 . . . , qgfl ] at time step n + 1. For a leap frog scheme, the aforementioned

fact can be stated as

+A - C O = I+ 0(V 3) . (2.145)

We seek a rotation matrix A such that

(2.146)
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4,A-*T = I, (217

and the deviation of 'I' from 'I' is minimized in the scaled L2 Frobenius norm sense, i.e.,

min'I' - q'II2,A-1. (2.148)

To find the appropriate rotation matrix A, we employ the SVD-based re-orthonormalization

scheme developed by Lin and Lermusiaux (2017). Briefly, the above minimization problem is

reduced to the trace minimization problem minA tr((A - I)TK(A -I)), where K = iPA lpT

and solved by employing lagrangian multipliers to obtain A = VE-/ 2VT, where V and E

are the eigen decomposition of K, i.e., K = VEVT.

2.8 Implementation

We follow a modular approach for implementing the DO-PEs by reusing the existing FOR-

TRAN code of the deterministic MSEAS ocean modeling system. For this purpose we

classify all the DO terms into linear, quadratic, and progressively higher order polynomial

terms based on the number of stochastic variables present in each term. The linear terms

that contain only one stochastic variables are stochastic Coriolis acceleration, pressure gra-

dient, vertical mixing, sponge, coastal and bottom friction, free-surface terms and horizontal

filtering. The quadratic terms with two stochastic variables are the advection terms. We

emphasize that the distinction into linear and nonlinear is only based on the number of

stochastic variables: for example, a nonlinear term such as advection of a stochastic tracer

by a deterministic velocity is linear in the number of stochastic variables. Such a distinction

helps identifying the parts of the code that can be reused with new variable names and data

structure.

The original PE variable names and data structures are retained for the mean equations,

with the addition of the covariance terms. The DO mode variables are stored in data struc-

tures near the common blocks that store the mean variables. The slab by slab computation

for the 3-d variables are retained. The outermost loop for all the DO mode variables corre-

sponds to the mode number. In the future, this approach can be efficiently parallelized using

MPI and/or OpenMP frameworks. The linear DO terms are coded by reusing the original

PE code for these terms, but with new DO mode variable names. The quadratic DO terms
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look similar to the original PE code, but now each quadratic term became four DO terms-

(mean,mean), (mode,mean), (mean,mode), (mode,mode). The (mean,mean) term is exactly

same as the original PE code, and the other three terms are implemented by reusing the

(mean,mean) code with the new variable names. The DO coefficient equation contains terms

that are present in the DO mode equation. These terms are computed only once and reused.

LAPACK eigendecomposition routines are used for re-orthonormalization. C preprocessing

options are provided to compile the DO-PE code with appropriate user specified options.

Open64 and Intel compilers are used for compiling.

Our hope is that such an approach can be easily replicated for easy extensions to other

modeling systems such as MSEAS HDG, ROMS, and/or WRF with minimal design and

coding effort.

2.9 Conclusion

In this chapter, we first presented the stochastic ocean primitive equations and motivated

the need to obtain dynamically orthogonal primitive equations. Next, we laid out the

new methodological questions that need to be answered in order to obtain these DO-PEs.

We identified appropriate state vectors, DO norms, and diagnostic equations for handling

non-polynomial non-linearities. We also obtained a novel DO condition that ensures or-

thogonality in a time-dependent domain. Thereafter, we obtained the continuous DO mean,

mode and coefficient equations for the stochastic primitive equations. Then, we laid out the

new computational questions that need to be answered in order to obtain discrete numer-

ical schemes for the DO-PEs. We obtained the schemes to decouple the mean, mode, and

coefficient equations, and time-splitting schemes to decouple DO mean momentum and free-

surface equations and DO mode momentum and free-surface equation. The time-dependent

distributed o-coordinate system that moves with the mean free-surface was also presented.

Next, we outlined the discrete DO-PE mean, mode, and coefficient equations. Novel re-

orthonormalization schemes that are consistent with the leap frog time-stepping of the DO

modes and coefficients are also provided.
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Chapter 3

Applications of Dynamically

Orthogonal Ocean Primitive

Equations

3.1 Introduction

In the previous chapter we described the development of the theory, schemes and software

for dynamically orthogonal ocean primitive equations. In the present chapter, we describe

results from applying the new software to simulate idealized to realistic stochastic PE dy-

namics. For the idealized illustration, we consider a flat bottom open ocean region with

size 100 km x 100 km x 1 km. For the realistic illustrations, we report results from sim-

ulations in the Middle Atlantic Bight and Shelfbreak Front region in September 2006, in

the New York Bight/Continental Shelf/Saragasso Sea region in February 2017, and in the

region around Lakshadweep Islands in the Arabian Sea for Sept/Nov 2017.

3.2 Idealized Stochastic PE Dynamics

Our first objective is to test the working of our new numerical schemes and software im-

plementation. For this purpose, we perform numerical simulations of idealized stochastic

PE dynamics. We consider a 100 km x 100 km x 1 km open ocean near the equator with

no Coriolis, atmospheric and tidal forcing. All other terms of the PE dynamics are active.

The open boundaries have a deterministic radiation condition on the velocity, tracer and
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free-surface fields. We employ a regular grid of size 100x100x5 with horizontal z-levels.

Initial Conditions The initial mean temperature and salinity is uniform throughout the

domain at 200C and 35 psu. We introduce an uncertainty in the temperature and salinity

fields, and thus the density of water in a vertical column of our domain. The uncertainty is

barotropic with a spatial covariance locally intensified and decaying exponentially from the

center of the domain with a hortizontal decorrelation length scale of 12.5 km. The initial

standard deviation of temperature, salinity and density is shown in Fig. 3-1.

Stochastic Dynamics The evolution of two realizations sampled from the initial joint

PDF of the state variables is shown in Fig. 3-2. Realization #1 has a warm column of

water that is lighter than the surrounding water, and realization #10,000 has a cold column

of water that is heavier than the surrounding water. The lighter water column rises and

heavier water column sinks. As heavy water sinks, nearby water at the top moves in to fill

up the space vacated and water at the bottom moves out to conserve mass. Similarly as

lighter water rises, water moves out at the top and moves in at the bottom. Overall, cells

of potential energy are converted to cells of kinetic energy.

3.2.1 DO Numerical Simulations

The initial uncertainty is represented in the DO space with nfp modes and np realizations.

We perform tests by varying the number of modes and realizations. We employ 3,5,10,20,40

and 80 modes, and 10,000, 100,000 and 1,000,000 realizations.

Evolution of DO modes and coefficients

Initially, the uncertainty is only in the temperature and salinity modes. The density modes

are related to the temperature and salinity modes by eq. 2.47. The density instability drives

the motion of the water and created modes of horizontal velocities. This in turn creates

modes for the vertical velocities by conservation of mass, and free-surface modes by the

free-surface equation.

To emphasize the 4-d evolution of the DO modes, we first show the evolution of the

temperature component of the 3-d DO modes. Fig. 3-3 to Fig. 3-6 shows the temperature

component of the 3-d DO modes #1,29,37,66 at four discrete times, T=0, 6, 9 ,12 h. The
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modes are numbered according to the energy at T=0. In this set of four figures, row 1 shows

the horizontal fields at z = 0, rows 2 and 3 show the i- and j-cross sections marked in row 1,

and row 4 shows the marginal PDF of the coefficient corresponding to the DO modes shown

in that column.

The evolution of the other four components of the 3-d DO modes, viz., u-velocity, v-

velocity, Salinity and free surface are shown in Figs. 3-7 to 3-10. In this set of four figures

we show the vertical cross sections of the u-velocity (along the i-section marked in Fig. 3-1)

in row 1, v-velocity (along the j-section) in row 2, Salinity (along the j-section) in row 3 and

the 2-d free surface in row 4. The columns correspond to the modes #1,29,37,66 as before.

The DO simulation evolves all the DO modes and coefficients together. The coefficients

describe a joint probability distribution of the uncertainty in the subspace. Figs. 3-11 and

3-12 show the joint PDF of the DO coefficients 1:4:77 at discrete times T= 3, 12.5 h.

In this simulation, all the stochastic dynamics are in the perturbations from the mean,

i.e., in the DO modes and coefficients. Hence, we do not show the evolution of the DO mean

states.

Evolution of DO realizations

From the evolution of the DO mean, modes and coefficients, individual realizations can

be reconstructed from eq. 2.22. Figs. 3-13 to 3-16 shows the evolution of four of the re-

constructed DO realizations at four discrete time T=0.5,3,6, and 12 h. The realizations

chosen are samples #1, #250,000, #500,000 and #1,000,000, representative of the uncer-

tainty along DO mode 1 at T=0. In this set of four figures, we show the cross-sections of the

v-velocity in row 1, w-velocity in row 2, temperature in row 3 and density anomaly in row 4.

At T=0, the v-velocity and w-velocity are identically zero, and the temperature and density

correspond to samples from the PDF of the initial uncertainty. In the first few time-steps,

velocity develops due to the density driven flow.

Fig. 3-13 shows the realizations at T=0.5 h. In realization #1, the heavy water sinks and

water moves in to the center of the domain at the top and moves out at the bottom. Hence,

the w-velocity is negative in the water column. The v-velocity is negative in the right and

positive in the left of the top indicating that water is moving in to the center. Simultaneously,

the v-velocity is positive in the right and negative in the left at the bottom indicating that

water is moving out from the center at the bottom. The dynamics of realization #1,000,000
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is exactly the opposite of realization #1. Here, the lighter water rises to the top and water

moves in at the bottom and out at the top. Hence, the w-velocity is positive in the water

column. The v-velocity is positive to the right and negative to the left indicating that water

is moving out from the center. At the bottom, the v-velocity is negative to the right and

positive to the left indicating that water is moving in to the center. The density profiles

for realizations #250,000 and #500,000 are in between the extremes with more complex

dynamics with several small scale features.

DO convergence

To study the effect of increasing the number of modes, we perform a DO convergence test

where we fix the number of realizations and increase the number of modes progressively.

We performed simulations with 3,5,10,15,20,40,60 and 80 modes and 1 million realizations.

In Fig. 3-17, we show the temperature section of realization #1 as reconstructed by the

DO simulation with 10, 20, and 80 modes, and the same temperature section obtained by a

deterministic simulation. Increasing the number of modes captures more features of the DO

realizations, and we become closer to the deterministic realizations. Moreover, even with a

low number of modes, the large scale features of the reconstructed realizations match well

with those of the deterministic realizations.

3.2.2 Discussion

A key objective of the present numerical tests was to verify the implementation of the

code and to ensure the software is bug-free. To this end, we have succeeded in verifying

the working of the code. The dynamics of the test case is relatively easy to explain and

thus allow us to isolate issues with the code fast. On the other hand, if the dynamics

were more complex, then the results would not be easily amenable to interpretation and

finding issues with the code is more difficult and time consuming. Several features of the

DO methodology and stochastic PE dynamics were also illustrated in the figures in the

preceding section. Critically, for the results presented here to be possible, all parts of the

code should work correctly. For example, initially there is no uncertainty in the velocity. For

velocity modes to develop, the 3-d DO density equation, with localized Taylor expansions

must be accurate. Modes which were lower in energy initially developed stochastic energy as

the simulation proceeded. If the numerical re-orthonormalization procedure did not respect
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the leap frog scheme and/or re-ordered the modes as the simulation proceeds (similar to

the issue reported in Feppon and Lermusiaux (2017a)), then such simulations would not be

possible. The fact that we were able to achieve convergence by increasing number of modes

suggests that the difference between reconstructed realizations and deterministic realizations

comes only due to DO truncation, and not due to numerical artifacts. These results give

us overall confidence in applying the numerical schemes and software thus developed for

realistic stochastic PE simulations. To further improve the presented idealized simulation,

we have to increase the number of vertical levels and adjust the vertical mixing parameters

to capture the dynamics accurately. Here, the focus was simply to test and showcase the

working of the code.

3.3 Realistic Stochastic PE Dynamics

Here, we apply our new numerical schemes and software developed in the present thesis

for realistic stochastic ocean simulations. Our objectives are to demonstrate and test the

capability of the software to study the 4-d uncertainty of the full PE state variables with

uncertain ICs and all dynamics options including realistic atmospheric and tidal forcing.

We consider two forecasting scenarios. The first is coincident with the SW06 experiment

in September 2006 and the second with the POSYDON experiment in February 2017. The

geographical range of the two modeling domains is shown in Fig. 3-18.

The initial uncertainty is objectively analyzed from data following the procedure in

Lermusiaux (1999b). The vertical variability of temperature and salinity is objectively ana-

lyzed from data. A horizontal covariance kernel of Mexican hat function with a decorrelation

length scale of 25 km and zero crossing length of 37.5 km is utilized to construct the 3-d DO

modes of variability. 100 ensembles of Temperature and Salinity profiles are sampled from

this initial uncertainty and utilized to create horizontal velocities and free-surface height

that are in PE balance. The, 3-d DO modes of the the joint state vector is obtained by

taking a SVD of the perturbation matrix with 100 ensemble members. The initial PDF

of the coefficients is assumed to be a Gaussian with standard deviation equal to q% of

the eigenvalue of that mode (i.e., the variability explained by that mode). For the SW06

simulations presented here, the uncertainty is initialized as the full variability (q = 100%).

This is done in order to test the capability of the probabilistic prediction schemes to handle
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large perturbations from the mean state. For the POSYDON simulations, the uncertainty

is initialized at q = 10% of the variability.

3.3.1 SW06 Domain - 01 to 10 Sept 2006

For these simulations we discretize the SW06 domain (Fig.3-18) with a horizontal resolution

of 3 km and 100 optimized vertical levels with rotated spherical coordinates. The size

of the grid is 175 x 150 x 100. The initial conditions of the mean state, open boundary

conditions, atmospheric and tidal forcing for this simulation has been obtained from the

MSEAS realtime predictions for the SW06 project (WHOI, 2006; Lermusiaux et al., 2006).

For a description of the mean oceanographic features, including the shelfbreak front, shelf

jets, and the effect of tropical storm Ernesto which passes over the domain from 02-04 Sept

we refer to Chapter 4 and (Subramani et al., 2017a). Here, our objective is to test the

DO-PE numerical schemes and software with a realistic scenario, but initialized with the

full variability.

The initial variability is obtained from two multiscale-in-space objective analyses of the

various in situ synoptic data products from the AWACS-SW06 experiment. For uncertainty

initialization the full variability in the domain is used for both in shore and off shore from

the expected shelf break front. This approach over estimates the uncertainty in the shelf,

and creates realizations that are well separated. This allows us to test all the feature of the

code with a small number of modes.

Evolution of DO mean, mode and coefficients

We utilize nr,g, = 10 DO modes and nrg, = 10,000 DO realizations, and integrate the DO-

PE equations for a duration of 10 days. We save data every 1h, but because of the lack

of space we will present all results only every 60h. Movies of the evolution of the 3-d DO

modes are available on request from the author.

We start with the evolution of the 3-d salinity and temperature modes. In Figures 3-24

to 3-28, we show the horizontal salinity component at z=-5m and cross sections of the DO

mean and modes 4,5, and 6 for t=0, 60, 120, 180 and 240h. In Figures 3-19 to 3-23, we show

the same as in the salinity figures, but for the temperature component of the state variable.

In these 10 figures, the row 1 shows the horizontal field, the row 2 shows the section along

the shelf and row 3 shows the section across the shelf. Column 1 shows the mean field,
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column 2, 3 and 4 shows modes 4, 5 and 6. Row 4, column 1 shows the energy spectrum

of the 10 DO coefficients and the row 4 for other columns shows the marginal PDF of the

corresponding DO coefficient.

Next we show the horizontal velocity fields of the DO mean and modes 4, 5 and 6 in

figures 3-29 to 3-33 at t=0, 60, 120, 180 and 240h. Finally, we show the joint PDF of all the

10 DO coefficients at t=120 and 240h in figures 3-34 and 3-35.

Here, the modes are numbered according to the initial energy. We choose to show modes

4, 5 and 6 because for most part of the simulation, modes numbered 4 and 5 have the highest

energy.

In this region and during this period, the key flow features are the Gulf Stream in the

southeast corner of the domain where the mean currents reach 200 cm/s. On the shelf

and shelfbreak region, the persistent meandering jet is the shelfbreak front. It flows from

the northeast to the southwest. Density and wind driven flows contribute to the shelf jets

and gyres on the shelf. The major wind activity during this time is the extra tropical

storm Ernesto, which passes over the domain during 01 to 03 Sept 2006. The domain sees

mostly the northeastern edge of the storm as it moves north. The ocean response is also a

southwestward and alongshore flow.

We have implemented and utilize deterministic boundary conditions. As such, the strong

mean Gulf Stream open boundaries, in the south west corner of the domain, advects out

all the uncertainty in temperature and salinity. We focus on the dominant temperature

(Fig. 3-19 to 3-23) and salinity modes (Fig. 3-24 to 3-28) on the shelf. From a higher time

resolution movie, we can see that the modes are largely advected by the tidal flows.

The vertical sections are shown up to a depth of 110 m or local bottom if it is shallower.

The mixed layer is visible in the temperature and salinity sections (near 20m depth). The

modes of salinity and temperature also show features in the vertical related to the vertical

stratification.

For the velocity modes, initially the modes correspond to the local multiscale features

in the region (the shelfbreak front), and gyres. Most velocity uncertainty is off shore from

the expected shelfbreak front, due to the initializations procedure adopted.

Initially, all the coefficients were Gaussian. In time, due to the nonlinear dynamics,

the coefficients develop non-Gaussian behavior as seen at t=120 (Fig. 3-34) and t=240 h

(Fig. 3-35). The skewness fields also indiacate this non-Gaussian behavior (Fig. 3-36). These
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results were possible due to proper choice of normalization and spatial weighting factors,

in addition to the correct implementation of various parts of the code including Coriolis,

vertical mixing, Shapiro filtering, Asselin filtering, re-orthonormalization, sponge, coastal

and bottom friction terms, localised 3-d density Taylor expansions for DO modes, conjugate

gradient descent algorithm for solving the surface pressure, and efficient memory handling

through common blocks.

Effect of spatial weighting factors of Inner Products

In Sec. 2.2.2 we discussed the importance of choosing appropriate norms for the DO state

vector to accurately characterize the variability of all the state variables at all spatial loca-

tions with minimum number of DO modes. To normalize the difference in the variability of

the different state variables, we normalize with the global standard deviation of that vari-

able. However, as we mentioned in Sec. 2.2.2, for a sigma coordinate system, it is important

to weight the state variables with the inverse of the finite volumes. We perform two simula-

tions: (i) without weighting with the inverse of the control volumes, and (ii) weighting with

the inverse of the control volumes. Fig. 3-36 shows the standard deviation and skewness

of the temperature fields (surface and two cross sections) at t = 159 h from the above two

simulations. From the surface standard deviation we see that, with 10 DO modes, when

weighting the inner product with the inverse of control volumes, the variance in the upper

layers is captured better than the simulation without weighting. The skewness is also higher

in the second simulation, indicating that with lower number of modes, the weighting ensures

that variability in the upper layers, where nonlinearity is expected in this case, is not lost

vis-a-vis the variability in the bottom layers.

3.3.2 POSYDON Domain - 12 to 16 Feb 2017

For these simulations we discretize the POSYDON domain (Fig.3-18) with a horizontal

resolution of 3 km and 100 optimized vertical levels with rotated spherical coordinates. The

size of the grid is 240 x 229 x 100. The initial conditions of the mean state, open boundary

conditions, atmospheric and tidal forcing for this simulation has been obtained from the

MSEAS realtime predictions for the POSYDON project (Lermusiaux et al., 2017a). Tides

from the OSU TOPEX/Poseidon Global Tidal Inverse Solution TPXO (Egbert and Erofeeva,

2002) were reprocessed for the higher resolution bathymetry, nonlinear bottom drag, and
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observational data using our inversion procedures (nonlinear extension of (Logutov and

Lermusiaux, 2008)). Our stochastic PE forecast is for 72 hours starting from 00 Z, 12 Feb

2017 using the latest the 5-km and 1-hour resolution forecasts from the Weather Research

and Forecasting (WRF) simulations at NCEP (NCEP, 2017) available at 12 Z, 11 Feb 2017.

For the DO modes and coefficients of the state variable we employ our initialization pro-

cedure described above. Here, we employ nr,,p = 20 modes and n,,p = 10,000 realizations.

The objectives of the study are again to test the code for a simulation of high dimension-

ality, with real atmospheric and tidal forcing. The latest version of NETCDF libraries and

formats, fast Intel Fortran compilers and efficient coding are essential to make such a large

simulation work.

Evolution of DO mean, modes and coefficients

The major multiscale features in the region are the shelbreak front, the gulf stream and shelf

circulations. First we look at the evolution of the salinity component of the 3-d DO modes

and the marginal PDF of the coefficients. The set of four figures 3-37 to 3-40 shows the mean

salinity field in column 1, salinity component of DO mode 4, 8 and 15 in columns 2, 3 and 4.

Row 1 shows the horizontal field at 10m depth, rows 2 and 3 show the sections marked by

black lines in row 1. Row 4, column 1 shows the energy spectrum of the first 20 DO modes in

terms of the variance explained. Row 4 of the other columns show the marginal PDF of the

stochastic coefficient corresponding to the mode shown in that column. We show the fields

at t=0, 24h, 48h and 72h here. From the energy spectrum it is clear that 20 modes are not

sufficient to explain all the multiscale variability in the region. Nevertheless, the simulation

shows the evolution of the dynamics and stochasticity retained by the KL truncation with

20 modes. It also serves to verify the capability of the code. At t=0, the salinity modes are

concentrated on the shelf due to the effect of the short scale initial correlations employed.

The 24, 48 and 72h forecasts show that the salinity component of the DO modes intensified

along the gulf stream and its re-circulations in the Sargasso sea and slope regions. The

primary variability in the dynamics in close to the strong gulf stream and the limited 20

modes are used to explain the variability associated with this major feature of the multiscale

flow in the region. The coefficients remain mostly Gaussian, indicating that the nonlinearity

in the stochastic PE dynamics for the large scale uncertainties retained by 20 modes is low.

Next we show the evolution of the mean and modes of the horizontal velocities at 10m
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depth. Figures 3-41 to 3-44 show the mean and DO modes 4, 8 and 15. The vectors show the

direction of flow for the mean, and the direction of flow for the positive coefficients of that

mode. The background is colored by the magnitude of the mean and modes respectively.

Initially, the velocity component of the modes are mostly in the Saragasso sea. As the

simulation evolves, the velocity component of the modes are used to explain the variability

in the recirculation zones of the gulf stream. The variability in the position of the gulf

stream also requires DO modes to explain.

Finally, we show the evolution of the temperature and free surface components of the

DO mean and modes. In Figs. 3-45 to 3-48 we show the temperature component of the DO

modes at 10m depth (row 1), cross section (row 2) at the line indicated in row 1, and the 2-d

surface pressure component of the DO modes in row 3. Similar to the salinity and velocity,

here also the DO modes are diffuse initially and become intensified near the gulf stream as

time evolves.

A key fact in the DO simulations is that all the components of the DO modes and

coefficients are evolved simultaneously in one DO simulation. The dynamics retained fully

respect the nonlinearity of the equations for the modes retained. Increasing the number

of DO modes is necessary in this simulation to capture and predict small scale uncertain

features. This would require distributed implementation of the present software, which we

leave for future work.

Evolution of DO realizations

From the evolution of DO mean, modes and coefficients, realizations can be reconstructed.

The 48 h forecast of four such realizations are shown in Fig.3-49 . These four and all the

other 9996 DO realizations are evolved together as mean, mode and coefficient in the DO

simulation.

The difference between the temperature fields of the reconstructed DO realization and

the corresponding deterministic simulation of that realization at 24 h and 48 h are shown

in Fig. 3-50 and 3-51 respectively. The differences are mostly small features near the gulf

stream, which require higher number of DO modes to capture. With only 20 DO modes,

the dynamics retained and the fields obtained are remarkably similar. This difference plots

indicates that DO simulations have the capability to not only capture the statistics and the

DO subspace, but also achieve a one-on-one correspondence between ensembles.
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Higher Order Statistics ancJMutual Information

A major advantage of the DO methodology is that the higher order statistics and other

derived information theoretic quantities can be efficiently computed from the DO modes

and coefficients. Fig. 3-52 shows the initial standard deviation of temperature and the 24,

48 and 72h forecasts. The stochastic DO-PE dynamics causes the initial standard deviation

to intensify around the gulf stream and other recirculation features in the Sargasso sea

and the slope. Fig. 3-53 shows the skewness fields of the temperature. Non zero values of

skewness indicate locally non Gaussian behavior. As expected the statistics near the gulf

stream and shelfbreak front are locally non-Gaussian, mostly due to the relatively stronger

currents which intensify the local nonlinear effects. Similarly, Fig. 3-54 shows the standard

deviation and Fig. 3-54 shows the skewness fields of salinity.

Adaptive Sampling answers questions similar to "Where should I measure the temper-

ature on Feb 13 so as to reduce the uncertainty in my velocity forecast for Feb 14?". To

answer this question, an information theoretic quantity called Mutual Information (MI) is

calculated and areas corresponding to high mutual information is identified Lolla (2016);

Lermusiaux et al. (2017b,c). The MI fields can be computed efficiently from the DO mean

and modes. Fig. 3-56 shows the MI between temperature at 20m on Feb 13 and velocity at

Om on Feb 14, visualized as a horizontal field. From this figure, we can identify sampling

areas with high MI.

3.3.3 Region Around Lakshadweep Islands

Motivated by the need for modeling and forecasting the coastal ocean conditions for a

sustainable fisheries management system in India, we set up our ocean modeling system in

the northern Indian Ocean region. Our goal is to build a physics-based, data-driven technical

decision aide for sustainable fisheries management.

The overall steps of our final solution is anticipated as follows.

1. Make probabilistic prediction of ocean physics with DO-PE

2. Develop and utilize data driven physics-to-fish models

3. Dynamic fishing and no-fishing zones with community participation in a co-management

regime (with Tata Trusts)
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4. Engage and co-opt governmental partners to scale therolution

In the present thesis, we focus only on the first step of our solution. Fig. 3-57 shows the

coastal Indian ocean region. Four four focus areas and a zoom of the Lakshadweep region are

highlighted. Here, we present results from an illustrative example from a real-time DO-PE

forecast simulation in the Lakshadweep region from Sept. 29 to Nov. 3, 2017. The DO-PE

forecasts were initialized on Sept 29 and 24h forecasts were obtained every 7.5 hrs. In a

day and a half, we issued a stochastic DO-PE forecast for 5 days that was equivalent to an

ensemble forecast with 100,000 members, each of the members being optimally perturbed

Monte-Carlo runs.

DO simulations

The domain is discretized with 1km resolution and 50 optimized vertical levels. Overall the

computational domain is of size 113 x 180 x 50, with n,,p = 25, and nT,, = 100, 000. For this

100,000 ensemble simulation, a classic Monte Carlo scheme would take 2 years of computer

time for 1 day of simulation, whereas the DO simulation completes in 7.5 h for 1 day of

simulation.

Four random realizations re-constructed from the five day DO simulation is shown in

figures 3-58-3-63. The top row shows the scaled vorticity at 6m depth overlaid by current

vectors, second row shows the salinity at 6m as a perturbation from the mean field at t=0,

third row shows the temperature at 6m as a perturbation from the mean field at t=0 and

the fourth row shows the cross section of temperature marked in the third row, again as a

perturbation from the mean at t=0. Snapshots at t=0,24,48,72,96 and 120 h are shows in

the five figures. We see that multiple realizations with different features are all simulated at

once by the DO equations, by evolving the mean, mode and coefficient equations. The large

number of ensembles would allow us to compute probabilities of derived quantities such as

fish concentration accurately.

Figures 3-64-3-69 show the temperature and salinity component of the DO mean and

modes at 6m depth and a cross section. The signals in the realizations can be seen from the

Temperature and Salinity components of the DO modes.

Here, our focus was on showcasing that our software is capable of simulating the stochas-

tic dynamics according to the full nonlinear ocean primitive equations accurately with a large
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number of ensembles. In the future, we will complete dynamical analysis based on these

results.

3.4 Conclusion

In the present chapter, we showed results from applying the theory, schemes and software

developed in Chapter 2 and 3 to simulate idealized and realistic stochastic PE dynamics. In

the idealized simulations, we were able to show DO simulations with 1 million realizations,

for the first time. We also showed that increasing the number of DO modes results in

convergence of the reconstructed realization to a deterministic simulation of that realization.

Critically, the numerical tests showed that different parts of the code responsible for updating

all the DO prognostic and diagnostic state variables worked correctly as expected. The

results also showed that the DO equations are able to capture the nonlinear dynamics and

non-Gaussian statistics of the state variables.

In the realistic stochastic PE simulations, we showed three examples: first in the SW06

domain during 1-10 September 2006, second in the POSYDON domain during 12-15 Febru-

ary 2017 and third in the Lakshadweep domain for Sept 29-Nov 03, 2017. The first two

example were hindcasts, the last one was a real-time forecast. The objectives of the three

test cases were to showcase the working of the code. Starting from an uncertain distri-

bution objectively analysed from available synoptic data, we simulated the 4-d dynamic

uncertainties for the forecast duration. In addition to describing the evolution of the DO

mean, modes, coefficients and reconstructed realizations, we highlighted certain key features

and unique applications of the DO methodology. For the SW06 domain, we showed the

importance of appropriate weighting of the DO state variables to capture the variability in a

sigma coordinate system with a low number of modes. We also showed that starting from a

Gaussian distribution, the nonlinear stochastic PE dynamics induce non-Gaussian behavior

for the joint-subspace of the state variables. For the POSYDON domain, we showed the

computation of mutual information fields which are useful for adaptive sampling applications

to reduce uncertainties. For the Lakshadweep domain we showed that 100,000 ensembles

can be simulated 2-3 orders of magnitude faster than classic Monte Carlo schemes.

Overall, we conclude that the schemes and software developed in the present thesis work

well. In the future, these can be applied for a variety of scientific and societal applications
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Figure 3-1: Initial standard deviation fields of temperature (column 1), salinity (column 2)
and density (column 3). The top row is the field at z = 0, the middle row is the zonal
cross-section and the bottom row is the meridional cross-section, as indicated by the black
lines in the top row.

as outlined in Chapter 7.

From the next chapter onwards, we focus on fundamental optimal path planning with

different versions of dynamically orthogonal level set equations.
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Figure 3-13: Four representative realizations reconstructed from the DO simulation T=O h
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Figure 3-14: Four representative realizations reconstructed from the DO simulation at T=6 h
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Figure 3-15: Four representative realizations reconstructed from the DO simulation at T=9 h
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Figure 3-16: Four representative realizations reconstructed from the DO simulation at T=12 h
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Figure 3-17: Effect of increasing number of DO modes on a reconstructed realization
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Figure 3-18: The geographical extent of the two domains utilized for realistic probabilistic
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Figure 3-40: Salinity component of the DO mean and modes, DO coefficients at t=72 h
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Figure 3-51: The temperature fields (surface and cross sections) reconstructed from a DO simulation and from a corresponding determin-
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Chapter 4

Energy-Optimal Path Planning in the

Coastal Oceans

4.1 Introduction

In recent years, autonomous platforms that can operate in harsh dynamic environments

with little or no human intervention are becoming ubiquitous for a variety of ocean ex-

ploration missions. For example, propelled Autonomous Underwater Vehicles (AUVs) and

gliders have been employed for scientific research, oil and gas discovery, search and res-

cue, security and surveillance, and monitoring of sensitive coastal ecosystems (Bellingham

and Rajan, 2007). Expanding user-bases and mission-complexities raise the needs of longer

endurance and optimization (Lermusiaux et al., 2016). The task of providing rules for

navigating such autonomous agents in a time-, energy-, data-, and/or safety-optimal fash-

ion is called path planning. A traditional focus of path planning, however, has been on

the motion of autonomous agents in static environments (e.g., Latombe, 2012). In com-

parison, ocean vehicles are significantly affected by the dynamic ocean motions, including

currents and waves. Often, the strong currents are comparable to the speed of propelled

AUVs and common currents are one-to-three times that of glider-speeds (Rudnick et al.,

2004). This situation provides an opportunity to optimize time and energy requirements by

intelligently utilizing the ocean environment, especially for long-endurance autonomy and

sustained sampling. For such planning, it is advantageous to leverage modern ocean model-

ing and forecasting systems. Our first objective here is to demonstrate a novel methodology
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that rigorously combines ocean field predictions with fundamental optimal planning Partial

Differential Equations (PDEs) to compute energy-optimal paths between two locations in

the coastal ocean. In Subramani and Lermusiaux (2016), we introduced this PDE-based

stochastic Dynamically Orthogonal (DO) level-set optimization and illustrated it for plan-

ning paths in canonical flow scenarios including a double-gyre barotropic quasi-geostrophic

circulation. In the present work, we focus on energy-optimal path planning for realistic

missions in the complex multiscale coastal ocean. Specifically, we plan energy-optimal paths

in the Middle Atlantic Bight (MAB) and shelfbreak front region, using realistic multiscale

ocean re-analyses obtained from the Multidisciplinary Simulation, Estimation, and Assim-

ilation System (MSEAS; Haley and Lermusiaux, 2010; Haley et al., 2015a). Our second

objective is to illustrate and analyze how energy-optimal paths in the region are affected

by wind-driven currents, shelfbreak front features, tidal flows, coastal jets, and other shelf

circulations.

Utilizing ocean forecasts to plan optimal paths has been tried with techniques such as

Rapidly Exploring Random Trees (RRTs), nonlinear optimization, evolutionary algorithms,

potential field methods, and Lagrangian Coherent Structures-based methods with varying

degrees of success. Rao and Williams (2009) used RRTs with energy-based path cost and

heuristic for generating feasible paths of underwater gliders navigating in the southern end

of the East Australian Current, off the coast of New South Wales in the Pacific Ocean.

They report energy improvements of 2% to 6% over grid paths when currents are not very

strong, and no improvement when currents are very strong. Alvarez et al. (2004) used

genetic algorithms to plan paths that minimize the energy required to overcome the to-

tal drag losses (modeled as a path integral of the cube of vehicle velocity) in a simulation

of the Sicily channel in the Mediterranean Sea, using a forecast from the Harvard Ocean

Prediction System (basis of MSEAS). Kruger et al. (2007) planned navigation paths in a

simulation of the Hudson River around Manhattan using nonlinear optimization techniques

and a cost function that includes obstacle avoidance, time of travel, target visitation, and

the energy used by a time-dependent engine thrust. Witt and Dunbabin (2008) combine the

use of potential fields for obstacle avoidance with an ad-hoc heuristic-based optimization

to minimize the energy needed by an AUV to overcome the drag force (quadratic nominal

velocity) and acceleration force (rate of change of nominal velocity) in hindcast simulations

for Brisbane's Moreton Bay. Lagrangian Coherent Structures (LCSs) estimated from Mon-
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terey Bay HF-radar data were shown to be close to energy optimal paths computed from

heuristic nonlinear programming (Inanc et al., 2005; Zhang et al., 2008). Hsieh et al. (2012);

Michini et al. (2014) describe collaborative tracking of LCSs using ocean data for the Santa

Barbara Channel along the California coast. For a more general review of energy-optimal

path planning, we refer to Subramani and Lermusiaux (2016).

In what follows, in Sect. 4.2, we summarize the stochastic DO level-set optimization

methodology for planning energy-optimal paths, rigorously utilizing ocean forecasts. In

Sect. 4.3, we describe the regional synoptic multiscale ocean circulation in the MAB region,

as analyzed by the multi-resolution MSEAS modeling system. We also study the atmospheric

and tidal forcing fields, and their effects on the regional currents. In Sect. 4.4, we provide

the results of our path planning. We analyze the effects of wind-driven currents, tidal flows,

and shelf circulations on the energy-optimal paths, and quantitatively assess the energy

savings. We also briefly discuss extensions for energy-optimal adaptive re-planning, for

optimal sampling, and for planning under uncertain forecasts. Finally, in Sect. 4.5, we

provide conclusions and future directions.

4.2 Theory and Methodology

We now outline the mathematical theory and solution method for energy-optimal path plan-

ning in complex ocean current fields. Details on the methodology including computational

costs are provided in Appendix C.1. The goal is to compute truly energy-optimal paths,

vehicle-speed time-series, and headings to be followed by a vehicle navigating from a start

point to an end point in the presence of a strong, dynamic and deterministic environmen-

tal flow (see Fig. 4-1). Following Subramani and Lermusiaux (2016), let us consider a

vehicle moving with a to-be-optimized time-dependent speed function F(0) from a start

point x, to an end point xf in the domain Q C 7 2 (Fig. 4-1). The motion of the ve-

hicle is affected by the dynamic currents v(x, t) : Q x [0, oo). Let us assume that the

vehicle's power requirement is a function of it's speed, e.g., a power-law dependence on its

speed p(t) = F(t)p , nr > 0 (Athans and Falb, 2007). Thus, the total energy requirement

for the vehicle is E(0) = fa(xf;F(*)) p(t) dt, where Ta(xf; F(s)) is the arrival-time at the

target. For a unique specified speed function F(t), the corresponding energy usage E is

minimized if the arrival-time is the minimum arrival-time at the target xf for that F(t), i.e.,
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1f Ta(xf; F(9)) = T(xf; F(s)). If Ta(xf; F(.)) was longer, more energy would be used than

needed for that F(t) and the path would not be energy-optimal. Hence, for a specified F(t),

the energy-optimal path is the time-optimal path. If one searches among all speed functions,

one thus obtains the exact energy-optimal paths and headings, for a range of arrival times.

Of course, for some speed functions, the end point cannot be reached, while for some arrival

times, there can be multiple optimal paths. The present methodology naturally accounts

for all such particulars (Lolla et al., 2014b; Subramani and Lermusiaux, 2016). We also note

that slowing the vehicle-speeds would decrease the instantaneous power requirement, but

increase the optimal arrival-time. A faster vehicle speed, on the other hand, would have

opposite effects. Changing the vehicle-speeds in accordance with the flow v(x, t) can thus

potentially decrease both the power-requirement and arrival-time resulting in a lower energy

consumption.

Integrating the above remarks, to obtain truly energy-optimal paths in a dynamic flow

v(x, t), we solve an optimization problem that computes the energy-optimal vehicle-speed

F*(t) from among all speed time-series F(e) of vehicles that reach the target in minimum

time. In other words, we seek energy-optimal paths from among all time-optimal paths

for a vehicle navigating between two locations in the presence of a strong, dynamic, and

deterministic flow. Mathematically, the problem is stated as follows,

T(xf;F(e))

min E p(t) dt (4.1a)
F(-)

0

S. t. &(xt) = -F(e)V(x, t) - v(x, t) - V (x, t) (4.1b)

in (x, t) Q x [0, oo)

T(xf; F(s)) = min{t: O(xf, t) < 0} , (4.1c)
t

#(x, 0) = Ix - xsl, (4.1d)

p(t) = F(t)"P , n, > 0. (4.1e)

where eq. 4.1a is the optimization and the constraints eqs. 4.1b-4.1d arise due to the fact

that all the vehicles with different F(s) travel exactly in a time-optimal fashion. The scalar

field O(x, t) is a reachability-front-tracking level-set function and the viscosity solution of
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the exact level-set Hamilton-Jacobi eq. 4.1b with terminal and initial conditions eqs. 4.1c-

4.1d. Only the zero level-set is needed, but for numerical convenience, an open boundary

condition can be used at the numerical domain boundaries JQ, e.g., a = 0, where

n is the outward normal to 6Q. The subsequent solution to the backtracking eq. 4.2,

dx* V9 5(x*, t)
= -v(x*, t) - F(e) VO(X*, t)

dt |VO(x*, t)| (4.2)

0<t<T(xf;F(e)) and x*(T)=xf,

yields the continuous-time history of the time-optimal vehicle heading angles, 0* (t) (Lolla

et al., 2014b; Lolla and Lermusiaux, 2017a; Subramani and Lermusiaux, 2016).

Energy-optimal paths can be computed by solving the optimization problem eq. 4.1 with

the current field v(x, t) provided by an ocean modeling system. To solve eq. 4.1, a stochastic

optimization and dynamically orthogonal equations are employed.

4.2.1 Stochastic Dynamically Orthogonal level-set optimization

Summarizing (Subramani and Lermusiaux, 2016), we treat F(t) as a random variable, i.e.,

F(t; w), where w is a random event. This treatment converts the level-set PDE (eq. 4.1b)

into a stochastic-PDE (S-PDE) written in the Langevin form as

ao(x, t; = F(t; w)IVO(x, t; w)I - v(x, t) - Vo(x, t; w) . (4.3)at

For F(t; w) > 0, we solve the S-PDE eq. 4.3 until the first time instant t such that #(xf, t; W)

0, starting from the deterministic initial conditions #(x, 0; w) = Ix - x. and with the bound-

ary condition x) = 0. Such a stochastic simulation yields the distribution of the

optimal arrival-time T(xf; F(*; w)) for a chosen distribution F(e; w).

To efficiently integrate the S-PDE eq. 4.3, we employ its stochastic Dynamically Or-

thogonal (DO) level-set equations (Subramani and Lermusiaux, 2016), here summarized in

Appendix C.1. These equations are simply a very efficient way to solve the S-PDE eq. 4.3:

we showed that they are three- to four-orders of magnitude faster than a direct Monte Carlo

(MC) method. Moreover, the computational speed-up comes at a modest cost of less than

2% error when compared to the MC solution and these MC-DO differences are commonly

of the order of discretization errors (Subramani and Lermusiaux, 2016).
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Once T(xf; F(e; w)) is computed from F(e; w) and eqs. (C.3-C.5), the distribution of

energy utilized is obtained as: E(w) = feT(x;F(w)) p(t; w) dt. Finally, for a particular

arrival-time-window, the speed function F*(t; w) that minimizes the total energy used E(w),

i.e. F*(t; w) = arg minF(.;w) E (w), can be obtained by searching among the marginal distri-

bution of vehicle-speeds that reach the target in the queried arrival-time-window. If re-

quired, the vehicle-speed function space F(*; w) is updated and another iteration may be

performed. The notation, DO equations, algorithm, and computational costs are outlined

in Appendix C.1.

In summary, the solution procedure simply consists of three distinct tasks as depicted

in the flowchart in Fig. 4-2. First is the ocean simulation to obtain the flow field for the

planning horizon. Second is the stochastic simulation using the reduced-order DO level-set

equations to obtain the distribution of optimal- arrival-time and energy for a stochastic

class of vehicle-speeds. Third is the optimization to identify the energy-optimal vehicle-

speed function for each arrival-time-window from the corresponding marginal distribution

of energy and vehicle-speeds. Next, we apply this methodology to the Middle-Atlantic

Bight-Shelfbreak-Front region.

4.3 Ocean circulation in the Middle-Atlantic Bight and shelf-

break front region

The first task in our path planning (Fig. 4-2) is to obtain an estimate of the environmental

flow field v(x, t), to be used in eq. 4.1b. Presently, v(x, t) is obtained from a realistic ocean

re-analysis of the MAB and shelfbreak front region for Aug.-Sep. 2006 during the real-time

AWACS and SW06 exercises (WHOI, 2006; Lermusiaux et al., 2006; Newhall et al., 2007;

Tang et al., 2007; Chapman and Lynch, 2010; Lin et al., 2010). Next, we describe the

ocean modeling system, the atmospheric and tidal forcing, and the multiscale ocean flows

encountered by gliders navigating in the MAB. Although we emphasize gliders, we note that

our theory applies to other platforms such as propelled vehicles and surface crafts.

4.3.1 Multi-resolution data-assimilative ocean modeling system

The ocean model employed is the MSEAS nonlinear free-surface hydrostatic primitive-

equation (PE) model, configured with generalized-level vertical-coordinates and implicit
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two-way nested computational domains (Haley and Lermusiaux, 2010). The domains are

shown in Fig. 4-3, overlaid on bathymetry. In the horizontal, they have a 3 km and 1 km

grid resolution, respectively, and in the vertical, they employ 100 levels optimized to the

thermocline and flow structures. Also shown in Fig. 4-3 are the two pairs of start (circle) and

end points (star) for which energy-optimal paths will be studied in detail. They are selected

because they are representative of classic missions as well as of the results we obtained with

many other start and end points (not shown). The main planning horizon is from 00 UTC

Aug 28, 2006 to 00 UTC Sept 09, 2006.

The tidal-to-mesoscale ocean re-analysis is initialized with objectively-analyzed tem-

perature, salinity, and velocity fields for Aug 14, 2006. Two multiscale-in-space analyses

(Lermusiaux, 2002), inshore and offshore of the expected shelfbreak front, are combined

using a shelfbreak-front feature model (Lermusiaux, 1999a; Gangopadhyay et al., 2003).

Each of these analyses fuses varied in situ synoptic AWACS-SW06 data, e.g., from glid-

ers, conductivity-temperature-depth (CTD) profiles, etc., and historical data, e.g., from the

National Marine Fisheries Service - NMFS, World Ocean Database, Gulf Stream Feature

analyses, Buoy data, etc. The Gulf Stream is initialized using synoptic and historical CTD

profiles as well as estimates of its position based on SST and NAVOCEANO feature anal-

yses. Transport-feature models are also used for the Gulf Stream and slope-recirculation

gyre. Barotropic tides based on the high-resolution TPXO7.2 surface-tide velocities and

elevation (Egbert and Erofeeva, 2002) for Aug 14 2006 are merged with the subtidal initial

fields, following (Haley et al., 2015a). The re-analysis free-surface PE simulation is then

integrated for 42 days. During integration, the ocean data collected during the AWACS and

SW06 exercises as well as data of opportunity (NMFS, etc.) are assimilated. At the free-

surface, atmospheric-forcing fluxes are applied, optimally merging the Weather Research

and Forecasting (WRF) fields into the larger Navy Operational Global Atmospheric Predic-

tion System (NOGAPS) fields. At lateral ocean boundaries, the open boundary conditions

(OBCs) employed consist of a new mixed sponge-radiation-tide formulation (Haley et al.,

2015b). The time-dependent barotropic tide velocities and elevation are used as forcing. The

OBC relaxes the sub-tidal flow to an exponentially-weighted time-running average, prevent-

ing the reflection of outward-propagating internal tides by absorbing them in a sponge layer,

but allowing the radiation of subtidal field variability such as fronts and eddies. Finally, the

numerical and sub-grid-scale parameters were tuned for the region by comparison of many
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PE simulations with independent in situ SW06 measurements. For the seasonal variability

and mean circulation in the Middle Atlantic Bight and Shelfbreak-front region we refer to

(Kohut et al., 2004; Lentz, 2008).

Next, we describe features of the external forcing and internal flows that affect the energy

consumption of gliders navigating in the region during Aug 28 to Sept 09, 2006.

4.3.2 External forcing fields

Atmospheric forcing

The atmospheric forcing fluxes combining the WRF and NOGAPS re-analyses are illustrated

in Fig. 4-4 by the daily average of the hourly wind forcing (N/m2 ). A major storm event is the

tropical storm Ernesto which advects northward over Mid-Atlantic states as an extra tropical

cyclone. Our computational domain experiences the northeastern edge of the cyclone with

winds blowing primarily onshore. The storm enters our domain on 31 Aug, 2006 15 UTC

from the south-southeast (SSE) and completely exits by 04 Sept, 2006. The largest winds

into the New Jersey coast have a maximum wind stress reaching 0.7 (N/m2) during the

peak of the storm (in the domain), on 02 Sept, 2006 (Fig. 4-4f). Before the storm, on Aug

28, there are moderate winds throughout the domain (Fig. 4-4a), parallel to the New Jersey

coast and onshore by Long Island. A minor wind event occurs from 06 Sept 00 UTC to 06

Sept 17 UTC (Fig. 4-4k). Barring this event, for glider missions, there is no other remarkable

wind activity in the region from 04 Sept to 08 Sept 2006.

Barotropic tidal forcing

A shallow water tidal model, based on (Logutov and Lermusiaux, 2008; Logutov, 2008)

but with nonlinear terms including nonlinear bottom stresses, is used to generate initial

tides and the lateral OBC tidal forcing. The model best fits the multi-component TPXO7.2

surface-tide velocities and elevations, correcting for the higher-resolution bathymetry and

coastlines employed in the MSEAS simulations and for the specifics of the MSEAS PE

bottom stress and numerics (e.g. App. 2.3 of Haley and Lermusiaux (2010)). Robust discrete

tidal continuity in the MSEAS domain is for example ensured through an optimization

procedure. Fig. 4-5 shows the amplitude of the dominant M2 tidal component, overlaid

with sub-sampled M2 tidal ellipses. The flow experienced by vehicles traveling over the shelf
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is clearly influenced by tides (e.g., Keen and Glenn (1995); He and Wilkin (2006); Kelly and

Lermusiaux (2016)), especially when winds are weak. In the area where the present missions

occur (~ 72.4"W to 74'W, and 38.5'N to 40.5"N, see Fig. 4-3), the maximum barotropic

tidal flows vary between 6 cm/s and 15 cm/s for the duration under study. Later on, we

will describe effects of this tidal forcing on both energy-optimal paths and constant-speed

time-optimal paths (see Sect. 4.4).

4.3.3 Ocean flows and regional circulation encountered by autonomous

gliders

In the present study, all gliders follow the same yo-yo pattern in the vertical. These yo-yo

patterns go from the near surface to either the local near-bottom or 400 m depth, whichever

is shallower (for the missions considered, most of the paths occur on the shelf, within about

20 to 100 m). The effects of small vertical ocean velocities are assumed to be accounted

for by the glider controller and the yo-yo patterns are assumed to be close to vertical when

compared to environmental horizontal scales (Lolla et al., 2014a; Subramani et al., 2015).

The currents that a glider encounters during such yo-yo motions are then the horizontal

currents integrated along its close-to-vertical path. These are the instantaneous currents

used in our optimization. For our week-long or so missions, we focus next on their sub-tidal

variability.

Fig. 4-6 thus shows the daily-averaged horizontal currents, depth-averaged from the sur-

face to the local near bottom or 400 m (for depths shallower than 400 m, the flow shown

is thus the barotropic flow up to the near bottom). We clearly see the Gulf Stream in the

southeast corner of the larger domain where the ocean currents can reach 200 cm/s. How-

ever, for our missions, gliders do not navigate that far. Hence, we focus on the shelf and

shelfbreak region. Its main persistent meandering jet is the shelfbreak front. It flows from

the northeast to the southwest with a barotropic magnitude of -15 cm/s. On 28 Aug 2006

(Fig. 4-6a), the flow on the New Jersey shelf is a cyclonic gyre. On 29 Aug (Fig. 4-6b),

the shelf flow reverses due to southwestward winds, developing first along the coast of Long

Island and intensifying to a mid-shelf south-southwestward flow by 30 Aug (Fig. 4-6c). On

31 Aug and 01 Sept (Fig. 4-6d,e), this flow weakens except south of the New Jersey shelf.

The extra tropical storm Ernesto passes over the domain during 01 to 03 Sept. The domain

sees mostly the northeastern edge of the storm as it moves north. The barotropic ocean
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response is also a southwestward and alongshore flow, but two-to-three times stronger than

on 30 Aug (reaching 15 to 30 cm/s) and shelfwide with intensification near the coast and a

correlation length of 400 to 500 km (Fig. 4-6f,g). This flow can be intelligently utilized by

gliders to reduce their energy requirement, as we will show later. From 04 Sept to 08 Sept

(Fig. 4-6h-1), a mid-shelf jet flows south on the New Jersey shelf, parallel to the shelfbreak

front. It starts northwest of the end point of mission 1 (39.76'N, 72.54'W) and south of the

Hudson canyon, and reaches a barotropic magnitude of 5 to 10 cm/s. This mid-shelf jet is

a remnant of the shelf response to Ernesto, partly supported by a local cross-shelf density

gradient (not shown) that Ernesto established. This weak flow advects slower vehicles to

the south away from the target as we will see later. On 06 Sept (Fig. 4-6j), by the New

Jersey coast, a barotropic shelf flow reaching 10 to 20 cm/s is forced by the minor wind

event between 00 to 17 UTC on that day. Finally, density-driven eddies and currents occur

on the shelf during the whole period but their barotropic flows are weak.

4.4 Energy-optimal paths and their analyses

To compute the energy-optimal paths of gliders navigating between two locations in the MAB

region, we now complete stages 2 and 3 (Fig. 4-2) of the methodology. For the illustrations

and dynamical studies, we consider only two of the varied glider missions that were hindcast.

The first missions have a start point off the coast of New Jersey and an end point north-

northwest of the Hudson River canyon (lighter gray points in Fig. 4-3). The second missions

have a start point off the coast of New Jersey and an end point across the shelfbreak front

within the AWACS/SW06 intensive region (see darker gray points in Fig. 4-3). The main

planning period is from 00 UTC 28 Aug 2006 to 00 UTC 09 Sept 2006. Next, we analyze

the optimal paths describing the responses to tides, wind forcing, and local currents. We

wrap-up the section with a short discussion on adaptive re-planning, adaptive sampling, and

forecast uncertainty.

4.4.1 From the coast of New Jersey to the Hudson River canyon

The start point is (40.05'N,73.80 W) and end point is (39.76 0 N,72.54'W) as shown by the

lighter gray circle (start) and star (end) in Fig. 4-3. For illustrative purposes, we used two

stochastic classes of vehicle-speeds (box 2a in Fig. 4-2) in which the speed switches every 48h
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(or 24h) and maintains the new speed for 48h (or 24h). These time-scales are in line with

common time-scales in the coastal ocean and represent what could commonly be done today.

The switch-sampling algorithm used here is outlined in Appendix C.1. Based on common

operational constraints and again for illustrative purposes, we assume that the minimum

and maximum speeds of the glider are 10 and 25 cm/s, respectively. Other choices are also

possible depending on operator preferences and mission requirements (e.g., Ramp et al.,

2009; Leonard et al., 2010). The numerical parameters are as follows: dx = dy = 3 km;

dt = 0.1h; n = 175; ny = 150; nr = 65,536; and nr 5o, = 120 (see Table 5.1 for notation).

Results of the stochastic DO level-set optimization are shown on Fig. 4-7.

Stochastic DO level-set simulation Fig. 4-7a shows the distribution of minimum arrival-

time, vehicle-speed time-series, and total energy utilized, as computed by solving the stochas-

tic DO level-set equations for these two stochastic classes. In Fig. 4-7a, the y-axis has been

normalized with the maximum energy utilized and the x-axis is the arrival-time. Each gray

dot corresponds to one of the 65,536 samples of the vehicle-speed distribution. The col-

ored dots correspond to gliders with a constant relative speed throughout their mission: the

coloring corresponds to that speed. They are explicitly represented in the figure as they

will be used for our analysis in Sec. 4.4.1. To further improve the computational efficiency,

during the integration, we pruned those samples of vehicle-speed time-series that use more

energy than constant-speed gliders for the same reachable front (Subramani and Lermusiaux

(2016)). Our methodology computes all the points represented in Fig. 4-7a by just two DO

simulations: one for time-dependent vehicle-speeds and another for constant vehicle-speeds.

Optimization We perform an optimization to obtain the energy-optimal vehicle-speed

time-series for all arrival-times. As examples, we show five such paths in Fig. 4-7b, corre-

sponding to the arrival-times marked in blue on Fig. 4-7a (The numbers 1-5 on Fig. 4-7b

correspond to those of Fig. 4-7a). The region shown in Fig. 4-7b is magnified from the com-

putational domain, as shown in the inset. Paths 1 and 2 are closer to a straight line joining

the start (circle) and end points (star) than paths 3-5, which are advected to the south by

ocean currents.
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Energy-optimal path of a glider reaching the target on 06 Sept 2006

We now describe and analyze the reachable sets, fronts, and paths between the start and end

points for a glider that travels with the energy-optimal time-series computed above, focusing

on the single arrival-time 02 UTC 06 Sept 2006. To evaluate the energy-savings, we need

a baseline for comparison. We choose this baseline as the energy requirement of constant-

speed gliders traveling in a time-optimal fashion. The reason for this choice is as follows. If

the gliders do not change their speeds along their paths, traveling in a time-optimal fashion

will use the least energy (see Sect. 4.2). Our method computes the vehicle-speed time-series

that would optimize the energy usage among all exact time-optimal paths. Hence, arriving

at the same time as time-optimal constant-speed gliders is the benchmark to beat for an

energy-optimal glider.

Before proceeding, we provide two remarks. First, it is not straightforward to identify

the constant speed with which a glider must travel in order to reach the target at a specific

arrival-time-window. To simulate such a large number of constant-speed gliders, the DO

level-set method is very efficient (colored points in Fig. 4-7a). Second, choosing as bench-

mark a constant-speed time-optimal glider is very demanding: the energy-savings would be

larger for less stringent performance criteria such as, e.g., a glider moving in a straight line

to the target (not shown here).

We first study the overall trend of the energy-savings achieved. In Fig. 4-7a, we high-

lighted the energy-utilized and arrival-time of constant-speed gliders by coloring them with

their speed. The thick black line at the bottom of the cloud of gray points is the energy-time

characteristic of the energy-optimal paths. The gap between these two lines indicates the

energy-savings achieved, when compared with the energy required by constant-speed gliders

reaching the target at the same time. Hence, these two lines can be considered as bounds

of energy consumption.

In Fig. 4-7a, the energy-optimal glider that arrives on 02 UTC 06 Sept 2006 is #6 and the

constant-speed glider that arrives at the same time is #7. Glider #6 consumes ~ 26% less

energy than glider #7. In that figure, the energy optimal gliders #1 to #5 that correspond

to other arrival times consume between 10 to 20% less energy than their constant-speed

time-optimal glider benchmarks. To study how the ocean flows affect the energy-optimal

paths we look at the following three figures. Fig. 4-8 shows how the reachable front (i.e., the
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zero level-set contour or exterior boundary of the growing reachable set) and optimal paths

evolve in time, overlaid on a color plot of the daily averaged horizontal flows experienced by

the gliders. Fig. 4-9 shows the time evolution of paths in 3h intervals during the last 27h

of the mission where wind activity is minimal and flows are mostly tidal (Sec. 4.3). Fig. 4-

10 shows instantaneous and 24h moving average of the effective vehicle-speeds, allowing a

quantitative understanding of the effects of the multiple flow timescales.

In Fig. 4-8, the nine panels correspond to the nine days from 00 UTC 28 Aug 2006 to

02 UTC 06 Sept 2006. Panels a-i depict the paths of the energy-optimal glider #6 and

constant-speed glider #7 from the start time until the end of the day shown in the panel.

The paths are colored by the instantaneous vehicle-speed at that location, and are overlaid

on the daily-average of the depth-averaged (400 m or near-bottom to the surface) horizontal

currents. Also shown are the reachable fronts of both gliders at the end of the day (black

for glider #6 and pink for glider #7). On 28 Aug (Fig. 4-8a), both gliders start sailing away

from the start point off New Jersey coast. Both reachable fronts are roughly circular, with

a slight elongation due to the weak offshore-ward shelf circulation on that day. On 29 and

30 Aug (Fig. 4-8b and c), southward coastal flows of 5 to 10 cm/s establish and affect both

reachable sets. On 30 Aug, the flow is around 15 cm/s at the southernmost part of both

reachable sets. On 31 Aug and 01 Sept (Fig. 4-8d and e), the energy-optimal glider is in a

region with a favorable flow, but the optimal constant-speed glider is caught in a flow that

advects it southward. This effect can be seen by the shape of the reachable fronts at the end

of 01 Sept. On 02 and 03 Sept (Fig. 4-8f and g), the gliders experience the ocean response to

Storm Ernesto. The energy-optimal glider is in a region that experiences maximum favorable

flow making it travel a longer distance to the south east (towards the target). The constant-

speed glider is advected south (off target). Moreover it travels a shorter total distance on

these two days. After the storm response, on 04 and 05 Sept (Fig. 4-8h and i), an adverse

circulation hinders the growth of the reachable sets north of the target. Since the paths of

both gliders were advected south during the storm, as a result, starting on 04 Sept, both

vehicles have to turn north-east towards the target.

The final stretches of both paths show the effect of tidal flows. Fig. 4-9 shows these

paths during the last 25h before the target is reached. Each of the nine panels show the 3h

average of the horizontal flow experienced by the gliders. The paths in panels (a)-(i) are

from the start of the mission until the end of the 3h window shown in that panel. The paths
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are colored with the total effective vehicle-velocity (not relative as on Fig. 4-8).

Both the constant-speed and energy-optimal gliders execute a spiral pattern due to tides

(panels of Fig. 4-9). The flow is first to the southeast (a). Next, it is southwest (b), then

northwest (c), then southwest (d), and then southeast again (e). Therefore, the gliders

complete an arc through (b) to (e). Panels (g), (h), and (i) also experience similar flow

patterns and paths. In Fig. 4-9b and f, the flows are directly opposing the motion of the

gliders to the target. The effective speeds are the lowest during these periods. Moreover,

the constant-speed glider #7 executes a small loop in (f) and travels briefly in a direction

directly opposite to the target. The energy-optimal glider #6 has a higher speed during this

period and does not loop around.

Fig. 4-10 shows the time-series of ocean current magnitude encountered by the gliders,

the instantaneous relative vehicle-speeds, the instantaneous effective vehicle-speeds, and

24h moving averages of the effective vehicle-speeds. The instantaneous effective vehicle-

speed time-series shows a periodic behavior matching the M2 diurnal tidal frequency. When

averaged over a 24h hour period, we see the effects of the weak flows in the region (with

time scales in the order days) on the gliders.

Overall, both the gliders arrive at the same time, but the energy-optimal glider employs

a lower speed for the first 6 days, and thereafter catches a helpful flow that increases it's

effective-speed. The constant-speed glider missed the opportunity to utilize this favorable

flow. This example illustrates the utility of leveraging ocean forecasts for energy-optimal

path planning, and demonstrates that our method is capable of rigorously incorporating this

information.

Unattainable arrival-times for constant-speed gliders: Effect of tides

Our next interest is to examine the reason for unnatainable arrival times for constant-speed

gliders and the wavy pattern of energy-time characteristics of the energy-optimal gliders

and constant-speed gliders (see the patterns of the colored and black lines, respectively,

in Fig. 4-7a). In Subramani and Lermusiaux (2016), we noted that the energy utilization

characteristics can be complex for dynamic flows such as the double-gyre circulation. For

example, reducing the relative speed can reduces the energy usage initially, but can rapidly

increase the energy usage on further reduction if the glider has to travel much longer distances

(e.g., to cross the strong unfavorable wind-driven jet). In the present missions (Fig. 4-7a),

150



we see that the energy consumption oscillates in a 24h period with a local energy minima and

maxima that roughly matches the M2 tidal frequencies. Moreover, there are some arrival

times that are unattainable as the time between the arrival of constant-speed glider #8 and

#9 (Fig. 4-7a).

Glider #8 travels at 16.51 cm/s and #9 at a marginally lower speed of 16.48 cm/s.

Fig. 4-11 shows six panels with the paths of these gliders during the 18h period from 03

UTC 06 Sept 2006 to 21 UTC 06 Sept 2006. As before, each panel shows a 3h average of

horizontal currents encountered by the gliders and the paths are overlaid on this colormap.

Here, the paths are colored by solid colors, gray for the glider #8 and black for glider #9.

The tidal flows are such that glider #9 has to travel for nine more hours and is caught in a

particularly strong opposing tidal flow. Therefore, it utilizes a higher energy than glider #8.

Moreover, the glider speeds and currents are such that there is no speed for which gliders

can reach the target in the intervening 9h period of, therefore unattainable, arrival-times.

Obviously, ocean engineering and forecasting cannot yet control vehicle-speeds and predict

flows at four-digits of accuracy. The point here is to showcase a well-known fact due to

advection: who misses the bus for a few seconds (e.g., because of not running fast enough)

may both be hours late and use a lot more energy to reach the destination.

4.4.2 Crossing the shelfbreak front from the coast of New Jersey

For our second set of start and end points, we compute the energy optimal paths for gliders

navigating from (39.40 N, 74.10 W) to (38.7' N, 72.5' W) (see darker gray points in Fig. 4-3).

These gliders have to cross the shelfbreak front. We employ the same stochastic classes of

vehicle-speeds and parameters as for the first set of missions (Sect. 4.4.1).

Fig. 4-12a shows the distribution of optimal-arrival-time and corresponding energy uti-

lization. As previously mentioned, each gray dot is a sample of vehicle-speed time-series and

each colored dot a constant-speed glider (color-scale is speed). Six arrival times are chosen to

exhibit the energy-optimal paths that reach the target at those times and marked #1-#6 in

Fig. 4-12a. Fig. 4-12b shows these paths colored by their instantaneous vehicle-speeds (right

color axis, in cm/s). In this case, the energy-savings achieved by energy-optimal gliders is

between 7 to 10% when compared to constant-speed gliders that reach the target in the

same arrival-time. The gliders that arrive after 05 Sept (#3-#6) are affected by the tropical

storm Ernesto and advected southward when compared to gliders that arrive before 05 Sept
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(#1 and #2). For the former gliders (#3-#6), after the favorable advection by the storm

response, they first sail northeastward to reach the shelfbreak frontal jet upstream. They

then sail in the jet, some further south than the end point, to finally sail northeastward

again and reach the target. This latter pattern of using and crossing the jet is a realistic

embodiment of the idealized energy-optimal crossing of a canonical steady front studied in

(Subramani and Lermusiaux, 2016). Considering tidal effects, they are less significant than

in the first set of missions (Fig. 4-8) since gliders sail further, southwestward and off the

shelf. Nonetheless, tides induce energy-usage oscillations (Fig. 4-12a) and spiral features in

the paths (Fig. 4-12b), both of which are more prominent on the tidally-dominated shelf (see

Fig. 4-5 in Sect. 4.3) than beyond the shelfbreak. We note that Fig. 4-12a shows samples

for arrival times beyond Sept 09 until Sept 12. We did not show however these winds and

flows in Figs. 4-4 and 4-6, respectively, because for these extra three days (Sept 09 to Sept

12) there is no strong flow/winds in the areas that affect our level-sets. The paths we show

are also only until Sept 09; the other paths that reach the target after Sept 09 have similar

characteristics (hence are not shown).

4.4.3 Adaptive re-planning, optimal sampling, and model uncertainty

Adaptive re-planning: The computational efficiency of the stochastic DO level-set opti-

mization method for open-loop energy-optimal path planning allows its use for dynamic

re-planning. For example, as the glider relays its measurements about local currents and

other physical-bio-geo-chemical properties, they can be assimilated into the ocean model to

obtain an updated data-assimilative forecast. Re-planning can then be performed remotely

with the updated flow fields or even on-board if such computations are feasible. Similarly, if

gliders or other vehicles collect data about the local currents, they could quickly re-estimate

new flow fields and our methodology could then be re-applied directly on-board as well

(Subramani and Lermusiaux, 2016). These adaptive variants of our planning methodology

are not illustrated in the present work, but our framework can be used to perform such

re-planning and on-board routing in the future. In fact, with such re-planning and compu-

tational efficiency, the open-loop control solution is repetitively computed and the resulting

adaptive control tends to the closed-loop control solution (Lermusiaux et al., 2016). For

a discussion of computational costs, see Appendix C.1.2 and Subramani and Lermusiaux

(2016). Typically, for our coastal applications, the computational costs of integrating the
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stochastic DO level-set equations and the ocean model are of the same order. They allow

similar real-time predictions and re-planning.

Optimal Data Collection and Adaptive Sampling: Here, we directly forecast energy-

optimal paths to target locations that are decided or predicted a-priori. Two examples of

such missions where minimizing energy is critical include deploying a glider to reach a specific

area in the ocean for subsequent data collection within that area, or recovering a glider at

a specific location after its mission is completed. Another example where our theory and

method directly applies consists of specifying an ordered set of optimal sampling locations

that need to be sampled within a certain maximum time and to utilize our methodology to

compute a path that reaches all of these sampling locations in the required order, minimizing

energy within the allowed time. Of course, sampling missions where there is a preferred

track or line for the glider to follow are not directly amenable to any energy-optimization:

in such missions, the sensing vehicle must sample along that line and it is unlikely that

an energy-optimal path would exactly be that line. What our reachable-set approach can

do however is forecast if this sampling-along-a-line is at all feasible or not (Lolla et al.,

2014b). The approach can also remain compatible with optimal sampling goals if it is first

used to compute energy-optimal paths for the pre-chosen set of sampling stations and then

augmented with a method that determines if the energy-optimal paths in between station

locations are still representative of the properties to be measured. If yes, the energy-optimal

path could be used; if not, a path that is not energy-optimal should be used. For example,

if the energy optimal path catches a current (e.g. the Gulf Stream) to save energy, the

resulting data sampled could have an undesired bias. For additional discussions on optimal

sampling including adaptive sampling with or without time-optimality constraints, we refer

for example to Lolla (2016) and Lermusiaux (2007), respectively.

Model Uncertainty: In the present work we considered the ocean forecasts to be deter-

ministic. When model forecast uncertainties are available, they can nonetheless be rigorously

incorporated into our optimal planning. In that case, the result is a probability of energy-

optimal paths and a risk formulation corresponding to the uncertainty in the ocean forecast.

Such planning in stochastic flow predictions is discussed in our other works (Wei, 2015;

Lermusiaux et al., 2016).
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4.5 Conclusion

We demonstrated that fundamental PDEs can be used for energy-optimal path planning

in the coastal ocean, integrating multiscale ocean forecasts with stochastic level-set opti-

mization. Our focus was on glider-missions in the Middle Atlantic Bight and shelfbreak

front region for two sets of start and end points. We hindcast energy-optimal paths from

among all time-optimal paths, for a range of arrival times during 28 Aug 2006 to 08 Sept

2006. The methodology-stochastic dynamically orthogonal (DO) level-set optimization-

has three stages: (i) data-driven ocean forecasting to obtain realistic flow fields, (ii) stochas-

tic DO level-set integration to compute the optimal arrival-times and total energy utilized

for a stochastic class of vehicle-speeds, and (iii) optimization to identify the energy-optimal

vehicle-speeds, paths, and headings. In the first stage, the currents were hindcast using

the data-assimilative MSEAS modeling system. Primitive equations were integrated with a

nonlinear free-surface, realistic bathymetry, and wind and tidal forcing, over implicit 2-way

nested computational domains. Varied observations were used for initialization and assimi-

lation, including data collected during the realtime SW06 and AWACS-06 experiments. In

the second stage, we solved the stochastic DO level-set PDE that governs the time-optimal

reachable sets for vehicles that navigate with stochastic relative speeds in the ocean re-

analysis. We then computed the joint probability density function (pdf) of total energy

utilized, optimal arrival-time, and vehicle-speeds. In the third and final stage, we selected

the vehicle-speeds that minimize energy from the marginal energy-vehicle-speed pdf, and

computed corresponding headings and paths by solving a particle backtracking equation.

This completed the planning.

We studied energy-optimal results for two sets of missions. One set started from the coast

of New Jersey to reach the Hudson River Canyon. The other started off the coast of Atlantic

City, New Jersey, to sail beyond the shelfbreak in the AWACS/SW06 region. For the first

set, we illustrated energy-optimal paths for a range of arrival times. We focused on the

02 UTC 06 Sept 2006 arrival and analyzed how currents advect the corresponding energy-

optimal glider. We benchmarked this glider with a time-optimal constant-speed glider that

arrived at the same time and found that the energy-optimal glider required - 26% less

energy. This energy-optimal glider sailed slower at first so as to later ride the favorable

ocean response to the tropical storm Ernesto. As a result, it was able to catch up with

154



the constant-speed glider while critically using less energy overall. We also revealed and

studied the effect of tides on the energy-usage and paths of optimal gliders, including the

resulting spiral path patterns. We explained how tidal flows (or other strong currents) can

lead to unattainable arrival-times for constant-speed gliders. For the second set of missions,

further south and beyond the shelfbreak, we also studied energy-optimal paths for a range of

arrival times. These missions again displayed effects of storm Ernesto and of the tides on the

shelf. Critically, they showcased how the shelfbreak front affects the energy-optimal paths,

revealing that the shelfbreak jet is at first-order a realistic embodiment of the canonical jet

(Subramani and Lermusiaux, 2016).

Overall, the stochastic DO level-set PDEs derived from first principles provide a promis-

ing capability for prolonging the endurance of marine vehicles, by taking advantage of the

ocean's dynamic environment. Particularly noteworthy is the computational efficiency: the

DO level-set PDEs for O(10') vehicle-speed time-series were here 3-to-4 orders of magni-

tude faster than traditional Monte-Carlo schemes and were as fast or faster than solving the

ocean primitive equations. Moreover, the unique combination of environmental forecasting

with the fundamental level-set PDEs provide a template for energy-optimal path planning

for drones or land robots navigating in dynamic air and land environments.

In the future, the approach can be extended to predict time- and energy- optimal paths

in uncertain ocean currents (e.g., Wei (2015), Chapter 5). Schemes can also be developed for

energy-optimal path planning with onboard routing (Wang et al., 2009), with coordination

for swarms of vehicles (Lolla et al., 2015), and with other ocean platforms such as kayaks

(Xu et al., 2008) and ships (Mannarini et al., 2013; Mirabito et al., 2017). Other avenues

for research include energy-optimal adaptive sampling (Leonard et al., 2010) and adaptive

modeling (Lermusiaux, 2007; Lermusiaux et al., 2007). Energy-optimal planning for real

gliders or propelled AUVs can also be completed in real-time, similarly to our recent real-time

at-sea demonstration of time-optimal path planning and forecasting with AUVs (Subramani

et al., 2017b; Edwards et al., 2017).

155



F4r"

Figure 4-1: Consider planning the path of a vehicle between x, and xf in a flow field v(x, t).
For each arrival time, our goal is to compute a minimal energy path, among the group of
time optimal paths each corresponding to a different vehicle speed time-series. Adapted
from Subramani and Lermusiaux (2016).

1. Ocean Modeling
Obtain the multiscale flow re-1

analyses in the coastal region of 2. Stochastic DO Level-Set Simulation
1 interest. ) Solve the stochastic DO level set Obtain the energy-time-speed

Choose a distribution and samples equations. joint pdf.
from a stochastic vehicle-spee2

28 function space.
3. Optimization

Update the vehicle-speed function: Compute the optimal paths and For a queried arrival-time window,
Upae and sahmles eae cini heading angles using the obtain the vehicle-speed time-

space d3b backtracking equation. H{ series that minimizes energy.

Figure 4-2: The flowchart outlining the three stages of the stochastic DO level-set optimiza-
tion methodology for energy-optimal path planning, rigorously combining optimal planning
PDEs with ocean flow forecasts (and/or re-analyses when re-planning).
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Figure 4-3: The Middle Atlantic Bight and shelfbreak front region where we compute energy-

optimal paths. The two-way nested computational domains (1 km and 3 km resolution,
respectively) are marked as white boxes, overlaid on bathymetry (color axis, in m). The

AWACS/SW06 experiment occurred mostly in the smaller domain. Two pairs (lighter and

darker grey) of start (circles) and end points (stars) for which energy optimal paths are

discussed in detail are also shown.
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Figure 4-4: Daily-averaged surface wind stress in N/m2 (colored), overlaid with daily-
averaged wind vectors showing directions and amplitudes (scale arrow is 2 N/m2 ). The

wind stress that actually forces the MSEAS ocean re-analyses is hourly and obtained from

a blending of the WRF and NOGAPS re-analyses.
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Figure 4-5: Colormap of the dominant M2 tidal component (in cm/s), overlaid with sub-
sampled M2 tidal ellipses.
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Figure 4-6: Daily-vertically-averaged horizontal ocean flow-field in the Middle Atlantic Bight
and shelfbreak front region. The horizontal currents shown are those encountered by vehicles
in a yo-yo pattern from the near surface to either the local near bottom or 400 m depth,
whichever is shallower. The flow patterns are illustrated by their vectors, overlaid on a color
plot of the flow magnitude (in cm/s).
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Figure 4-7: Energy-optimal path planning for gliders navigating from the coast of New
Jersey to the Hudson River canyon: (a) Distribution of optimal arrival-time (x-axis) and
energy utilized (y-axis) for the samples (represented as dots in the cloud) of vehicle-speed
time-series, F(t; r). The colored dots are constant-speed samples with the color representing
their vehicle-speeds in cm/s (color axis to the right). The gray dots are realizations that
consume less energy than constant-speed realizations but with same arrival-times (only these
"gray dot" realizations are shown since the others are pruned by our algorithm). The lowest
energy envelope is shown by a thick black line. The paths corresponding to dots highlighted
with numbers 1-8 are used as examples in our analysis. (b) Energy-optimal paths 1-5 shown
on a magnified view of a region of the computational domain (in the inset). Paths are colored
by their instantaneous speeds in cm/s (color axis to the right). These paths are computed
using the vehicle-speed time-series that minimizes the energy requirement for that arrival-
time from the above distribution. Paths 1 and 2 are closer to a straight line joining the
start (circle) and end points (star) than paths 3-5, which are advected to the south by ocean
currents. Points 6-9 are used for analysis later.
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Figure 4-8: Paths and reachable fronts for the energy-optimal gilder (#6) and time-optimal

constant-speed glider (#7) that reach the target on 02 UTC 06 Sept 2006. Each panel shows

a color plot of the daily average of the depth-averaged horizontal currents experienced by

the gliders, with vectors indicating the local flow direction (color axis in cm/s at the bottom

row). These ocean flows are overlaid with the paths and reachable fronts for gliders #6

and #7, from the start date until the end of the day shown on each panel. The paths

are colored by their instantaneous relative vehicle-speeds (color axis in cm/s to the right

column). Glider #6 is able to utilize the ocean response to the tropical storm Ernesto from

Sept 02-04. Glider #7 does not catch this weak flow. Towards the end of the mission, both

gliders are affected predominantly by the tidal flow (see Fig. 4-9). The energy-optimal glider

employs a higher speed F(t) in this region and is thus able to spend less energy overall and

still reach the target at the same time as the time-optimal constant-speed glider.
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Figure 4-9: Effect of tides on the paths of the energy-optimal gilder (#6) and the time-
optimal constant-speed glider (#7) in the last 27h: The nine panels show 3h average of the
vertically-averaged horizontal flows (bottom color axis, in cm/s) from 04-Sept 23 UTC to
06-Sept 02 UTC, with vectors indicating flow direction. Each panel is a magnified region
close to the target. Overlaid on the flow are the paths of gliders #6 and #7 until the end
time of each panel, colored with their total effective vehicle-speed (right color axis, in cm/s).
Both gliders execute a spiral pattern.
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Figure 4-10: Time series of the (a) ocean current magnitude, (b) instantaneous vehicle-

speed, (c) effective vehicle-speed, and (d) 24h moving average of effective vehicle-speed for

gliders #6 and #7. Glider #6 travels at a lower speed than glider #7 initially, and thereby

catches a strong favorable flow as a response of storm Ernesto from Sept 02-04 (#6 in panel

a). Glider #7 does not experience this flow. On Sept 03, glider #6 switches to a higher

speed (panel b) and travels at an effective speed of upto 40 cm/s. From Sept 04 onwards,

when strong tidal flows dominate, glider #6 maintains higher relative speeds and its effective

speed goes only as low as 10 cm/s, whereas glider #7 has periods with a near-zero effective

speed (panel c). Panel c and d together show the multiscale aspects of the effective vehicle-

velocity. Instantaneous effective speeds have a large intra day variability showing the effect

of tides while the 24h moving average shows the effect of longer timescale circulations (order

of days).
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Figure 4-11: Effect of tides on the paths of two constant-speed gilders with speeds 16.51
cm/s (#8 in gray) and 16.48 cm/s (#9 in black): The six panels show 3h time-averages of

the vertically-averaged horizontal flows (color axis in cm/s to the bottom), from 03 UTC 06
Sept 2006 to 21 UTC 06 Sept 2006, with vectors indicating the flow direction. Each panel
is a magnified region close to the target. Overlaid on the flows are the paths of gliders #8
in gray and #9 in black, until the end time of each panel. Even though glider #9 is only
marginally slower, it takes nine more hours and consumes more energy than glider #8. The

energy requirement of both the gliders are given in Fig. 4-7a.
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break front from the coast of New Jersey. Longer duration gliders (#3-#6) stay on the

shelf during the ocean response to storm Ernesto and are advected southward by its ocean

response. Gliders #1 and #2, however, cross this region where the storm's response is

intensified before it does intensify: they are thus not much affected by the storm.
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Table 4.1: Stochastic DO Level-Set Optimization: Algorithm
Ocean Modeling System

1. Obtain the velocity-field forecast from a realistic simulation of the region of interest for the planning
horizon using an ocean modeling system.

Stochastic DO level-set simulation

2. Sample r = 1,.-- , nl realizations of relative vehicle-speeds for the planning horizon from a class of
stochastic processes and its DO (KL) representation FDo(e; r) = p(.) + z(o, r)F .

3. Solve the stochastic DO level-set eqs. C.1.1, with n, realizations and n,, modes to compute the n,
optimal arrival-times at the target T(xf; FDo(e; r)) corresponding to each relative-speed realization
FDo(e; r).

4. Compute the energy utilization for each realization using E(r) = frT(xf;FO(*;r)) p(t; FDo(e; r))dt.

Optimization

5. From the stochastic DO level-set simulation, identify all realizations that arrive at the target in each
of the queried arrival-time-windows.

6. For each of these subsets of realizations, select the realization that utilizes the minimum energy, and
compute its path using the backtracking eq. 4.2.

Iterate

7. If needed, re-sample the function space F(.; w) or expand this function space by (machine) learning.

Table 4.2: Notation and acronyms relevant to the stochastic DO level-set optimization.
Scalar

E N Stochastic subspace index
F(o) E R Vehicle speed functional
F(s) E R Mean vehicle speed functional
F(e) c R DO mode (spatial) of vehicle speed functional
no, ny, n, E N Number of grid points in the x-, y- and z-directions respectively
n. E N Total number of grid points in the horizontal direction
ns,, E N Dimension of the stochastic subspace of level-set
ns,F E N Dimension of the stochastic subspace (in time) of vehicle speed

functional
Yi E R Random variable describing the pdf of the orthonormal level-

set(#) modes #i
z E R Random variable describing the pdf of the vehicle speed F
nr E N Number of Monte Carlo realizations of the level-sets (and vehicle

speeds).
nsw,F E N Number of switches made in the vehicle speed throughout the

duration of the simulation for the switch-sampling algorithm
1 E N Number of discrete levels into which the vehicle speed spread is

divided for the switch-sampling algorithm
r E N Realization index
T E R+ Optimal arrival time random variable

Vector
E Rf9 Level-Set field
E R"-g Mean Level-Set field

E R"lg DO mode i of #: Dynamically orthogonal basis for the stochastic
subspace of #

E Rfl n 171
Acronyms

DO
PDE
MC

Dynamically Orthogonal
Partial Differential Equation
Monte Carlo
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Chapter 5

Stochastic Time-Optimal Path

Planning in Strong, Dynamic and

Uncertain Flows

5.1 Introduction

Planning optimal paths of autonomous platforms in dynamic environments such as the

ocean and atmosphere is important for maximally utilizing the platforms' capabilities. In

the ocean, commonly used autonomous vehicles-underwater gliders, propelled underwater

vehicles and surface crafts-often undertake complex missions such as oceanographic data

collection, search and rescue operations, oil and gas discovery, and acoustic surveillance and

security tasks (Bellingham and Rajan, 2007; Curtin and Bellingham, 2009; Schofield et al.,

2010). Path planning is the task of predicting paths for these vehicles to navigate between

any two points while optimizing some or all operational parameters such as time, energy,

data collected, and safety. A related concept is dynamic reachability forecasts, the task of

predicting the dynamic set of all the locations that can be reached by these vehicles.

One major challenge in dynamic reachability forecasting and optimal path planning for

realistic ocean conditions is that current forecasts are uncertain. There could be uncertainties

in the initial conditions, boundary conditions, parameters and even terms in the equations

themselves (Lermusiaux, 2006). In the present paper, our objective is to develop fundamental

and efficient stochastic equations and methodology for computing the reachability fronts and
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time-optimal paths of vehicles navigating in strong and dynamic uncertain flow fields. As

we will see, such an approach also helps us in quantifying the sensitivity of optimal paths

to errors in flow predictions.

A traditional focus of path planning has been on autonomous agents in complex but

static environments. These traditional methods can be broadly grouped into graph-based

search methods, nonlinear optimization methods including those with evolutionary algo-

rithms, and dynamics-based approaches including Lagrangian Coherent Structures. For a

review, see (e.g., Hwang and Ahuja, 1992; LaValle, 2006; Lolla et al., 2014b; Lermusiaux

et al., 2017c, and references therein). Recently, fundamental level-set Partial Differential

Equations (PDEs) that govern reachability have been developed for time-optimal (Lolla

et al., 2012, 2014b, 2015) and energy-optimal (Subramani and Lermusiaux, 2016) path plan-

ning of autonomous swarms in strong and dynamic deterministic flows. This level-set PDE-

based methodology overcomes the limitations of traditional path planning methods designed

for robotic motion in static environments. It can indeed directly utilize a prediction of the

dynamic environment to plan time- or energy- optimal paths that intelligently utilize fa-

vorable flows and avoid adverse currents. It also directly avoids physical obstacles (e.g.,

islands) and forbidden regions due to operational constraints (e.g., minimum water depth)

thereby ensuring vehicle safety. Its use with realistic deterministic ocean re-analyses was

demonstrated in several ocean regions (Lolla et al., 2014a; Subramani et al., 2017a) and in

real-time sea exercises with real AUVs (Subramani et al., 2017b). However, the correspond-

ing PDEs and methodology need to be extended to dynamic stochastic environments.

Progress has been made on path planning for autonomous robots in uncertain environ-

ments. Wellman et al. (1995) extended graph-based search methods to account for uncer-

tain edge costs with applications to stochastic bus networks. Kewlani et al. (2009) extend

graph-based algorithms to explicitly consider uncertainty in the mobility and terrain pa-

rameterizations using stochastic surface response methods. Potential field methods have

been used in a Monte Carlo approach to solve path planning problems in uncertain flows

by Barraquand and Latombe (1990). Rathbun et al. (2002) report the use of evolutionary

algorithms to plan paths of Unmanned Aerial Vehicles in an airspace with uncertain ob-

stacles. Wang et al. (2016) perform path planning of autonomous vehicles in dynamic and

uncertain ocean currents using an ensemble approach. The authors solve the deterministic

Boundary Value Problem (BVP) for each member of the ensemble to compute the statistics
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of optimal trajectories. Considering all of these approaches, on the one hand, the extension

of graph-based methods is not suitable for dynamic environments as their cost increases

exponentially and there is a lack of optimality guarantee. On the other hand, the Monte

Carlo and ensemble approaches can have slow convergence and prohibitive costs that in-

crease with the complexity of uncertainty. For optimal path planning in dynamic stochastic

environments, fundamental and efficient stochastic PDEs (S-PDEs) are needed.

In what follows, we first outline the problem statement, present our exact planning

level-set S-PDEs and new efficient stochastic DO level-set PDEs (Sec. 5.2). Next, we show-

case applications that validate and demonstrate the capabilities of our equations (Sec. 5.3).

Finally, we provide some concluding remarks (Sec. 5.4)

5.2 Stochastic Time-Optimal Planning PDEs

5.2.1 Problem statement

Consider an open set D E 7") (nD = 2 or 3 for 2-D or 3-D in space), time t E [0, oo) and

a probability space (Q, B, P), where Q is the sample space, B is the o-algebra associated

with , and P is a probability measure. Starting at t = 0, let a vehicle (P) navigate in D

from x, to xj with a nominal speed F(.) > 0 under the influence of a stochastic dynamic

flow-field v(x, t; w) : D x [0, oo), where w E Q is a random event. Let Xp(x,, t; w) be a

general continuous trajectory from x, to xj (Fig. 6-1). The main notation is provided in

Table (5.1).

Our goal is to predict the stochastic reachability fronts and time-optimal paths.

5.2.2 Stochastic level-set partial differential equations

We approach the above stochastic time-optimal path planning problem starting with the

exact level-set PDEs for deterministic path planning (Lolla et al., 2014b). Here, the source

of stochasticity is the uncertain dynamic flow v(x, t; w) (in comparison, the vehicle speed was

artificially made stochastic for energy optimization in Subramani and Lermusiaux (2016)).

The stochastic reachability front for P is thus governed by the stochastic Hamilton-Jacobi

(HJ) level-set equation

&q(x, t; ) + F(t) IV(x, t; w)I + v(x, t; w) - V4(x, t; w) = 0, (5.1)
at
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E N
E R
E R"
E N
E N
E N
E N
E N
ER

E R

E N

E N
E R"n'"n
E Rn"9
E Rnng

Table 5.1: Relevant notation.
Stochastic subspace index
Vehicle speed
Physical domain
Dimension of D
Number of discrete grid points in the x-direction and y-direction
Total number of discrete grid points in D
Dimension of the stochastic subspace of #, the level-set scalar field
Dimension of the stochastic subspace of v, the velocity vector field
Random variable describing the PDF of the orthonormal level-set (0) modes

qOi
Random variable describing the PDF of the orthonormal velocity (v) modes,

Number of Monte Carlo realizations of the level-sets (and velocity vector
fields)
Realization index
Velocity vector field
Mean velocity vector field
DO mode i of v: Dynamically orthogonal basis for the stochastic subspace
of v

E R"n Level-Set field
E R"n Mean Level-Set field

E R"n DO mode i of #: Dynamically orthogonal basis for the stochastic subspace
of #

Cy y3  ns,0 x ns,( Covariance matrix between Yi and Y for i, j = 1-. n*,*
Cmi Y, nsv x n,, Covariance matrix between pj and Yk for j = 1 ... n.,, and k =1 ... n,4

Sample space of uncertain velocity
B io-algebra associated with Q
P Probability measure that returns the probability of events in B
E[9] E R"n Expectation operator returning the mean of .

(0,0) E R Spatial inner-product operator between any two fields
W E Q A random event
xs, xf E D Start and final target locations
X* (x,, t; w) E E) x [0, oc) Stochastic time optimal path from x, to xf corresponding to the random

event w
T*(xf; w) E R+ Optimal arrival time at target xf corresponding to the random event w

with the initial condition 4(x, 0; w) = Ix -xsI and, if needed, open boundary conditions such

as (t = 0, where n is the outward normal to the boundary 6D, w is a random

event, and # is the reachability-front-tracking scalar level-set field (e.g., signed distance

function). For every w, the optimal arrival-time T*(xf; w) at xj is obtained by integrating

eq. 5.1 until the first time t such that #(xj, t; o) 0. The corresponding optimal trajectory

X* (x,, t; w) is then given by the particle backtracking equation (where # is differentiable)

dX* (x,, t; w) V#(X *(x, t; w), t; W)
= v(X* (x,, t; w), t; w) - F(t)

dt P IV#(X* (xs, t; W), t; W) I

0< t T*(xf ; w) and X* (x,, T*; w) = xj. (5.2)
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Solving the S-PDEs eq. 5.1 and eq. 5.2 would fulfill our goal. Eq. 5.1 can be integrated by

direct Monte Carlo methods; however, the computational cost of such a method is prohibitive

for practical applications. Classic reduced-order stochastic methods could be utilized (Xiu

and Karniadakis, 2002; Ghanem and Spanos, 2003; Debusschere et al., 2004; Pettersson

et al., 2015). However, due to the variable propulsion and advection terms, and the highly

dynamic flows, they can sometimes diverge or be inefficient. We thus employ a dynamic

stochastic order reduction, specifically the Dynamically Orthogonal (DO) field equations

(Sapsis and Lermusiaux, 2009, 2012) that were shown to be an instantaneously optimal

reduction using differential geometry arguments (Feppon and Lermusiaux, 2017b). Next,

we obtain these efficient stochastic DO level-set equations.

5.2.3 Stochastic Dynamically Orthogonal level-set equations for uncer-

tain flow fields

As mentioned previously, in Subramani and Lermusiaux (2016) we obtained the stochas-

tic DO level-set equations when the vehicle-speed F(t) in eq. 5.1 was made stochastic (i.e.,

F(t) -+ F(t; w)). Here, the difference is that we have a deterministic F(t) and the stochastic-

ity comes from the uncertain flow-field v(x, t; w). This stochastic flow-field can be computed

before solving the stochastic level-set equations and considered as an external forcing to the

S-PDE eq. 5.1.

Let us introduce DO decompositions to the uncertain flow-field v and the stochastic

level-set 0 as

ns,v

v(x, t; w) = V(x, t) + Apj(t; W)vr (x, t), (5.3)
j=1

#(x, t; w) (x, t) + Yi(t; W)i(x, t), (5.4)

where pj (t; w), V j = I ... n,, , and Y (t; w), V i =... n,, are zero-mean stochastic pro-

cesses that represent the generally complex probability density functions of the velocity and

level-set fields respectively.

Henceforth, we drop the spatial and temporal variables in parenthesis for brevity of

notation. We use repeated indices to indicate a summation over nr,v velocity DO modes or
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no level-set DO modes, as the case may be. We also define -y =V01.

Substituting eq. 5.3 and eq. 5.4 in eq. 5.1, we obtain

t + Yi t +#id =-F - (V + tij) -V( +Yi). (5.5)

We then derive the mean equation by applying the expectation operator to eq. 5.5, the

coefficient equations by projecting eq. 5.5 onto the modes ej, and the mode equations by

multiplying eq. 5.5 with Y and then applying the expectation operator. We provide the

detailed derivation in Wei (2015). The results are as follows:

FE[-] + V - V + Cjjy'i - Vei ,(5.6a)

dY = 

Y -F(-y -E[-y]) +YkV -V& -+ Pi_' -V y+9 -riV&(pjYk CjYJy1 Oi

dt-

(5.6b)

= Qi - (Qi, $? , , (5.6c)

whereQ = -Cjy [FE[Y] +C0 Vq+ E[YpkYi]rk-V -v -Vq,

where C denotes the covariance matrix between the two stochastic variables indicated in

the respective subscripts (Table 5.1).

Here, we do not consider a separate DO decomposition for the non-polynomial nonlinear-

ity y but choose to handle only that term realization-by-realization and compute the required

statistical quantities E['y] and E[zy]. Other approaches for handling the non-polynomial non-

linearity, viz., KL-Gamma and Taylor-Gamma (Subramani and Lermusiaux, 2016) could

also be utilized (not shown here).

The solution of DO eqs. 5.6 provides reachability fronts for all realizations W. The min-

imum arrival time for each realization is the first time t for which #(xf, t; W) < 0. Subse-

quently, the stochastic particle backtracking eq. 5.2 can be solved to obtain the time-optimal

trajectories X* (x,, t; w). The solution also provides the time-series of time-optimal head-

ings h*(t; w), again for all w. In Sect. 5.3, we validate the solution obtained by the DO

level-set equations (5.6) by comparing it with that obtained from direct Monte Carlo (MC)

methods. We also showcase applications for predicting the stochastic reachable sets, fronts,
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Table 5.2: Numerical parameters for all three Test Cases (notation defined in Table 5.1).
Test Case n,, ny dx dy dt n, nsv ns,4

1 300 150 1 1 5e-2 2000 1 50
2 100 100 0.01 0.01 le-5 5000 5 50
3 240 60 0.067 0.067 le-2 10000 8 50

and time-optimal trajectories for vehicles navigating in uncertain flow-fields.

5.2.4 Computational costs

The computational cost of solving the level-set PDE eq. 5.1 for W fixed is commonly dom-

inated by the cost of the advection term. Thus, the cost of a MC method scales with the

number of realizations and grid points as O(nng). The cost of solving the stochastic DO

level-set equations is also often dominated by the advection terms (by the velocity mean

and modes). This cost scales as O((n,,v + 1)(n,, + 1)ng) and is independent of nr. nr only

affects the cost of solving the coefficient eq. 5.6b, which is simply an ODE independent of

ng. For typical values of ng, n, nri, and n,,v of realistic applications, the computational

speed-up can be several orders of magnitude.

5.3 Applications

We apply the efficient stochastic DO level-set PDEs to compute stochastic reachability

fronts and time-optimal paths in three test cases. They correspond to different stochastic

flow configurations: (i) a simple canonical steady front where only the strength of the flow

is uncertain, (ii) a stochastic dynamic barotropic quasi-geostrophic double-gyre circulation,

and (iii) a stochastic flow past a circular island. We employ the first test case to verify the

solution of the DO equations by comparing it with its corresponding Monte Carlo (MC)

solution. In all test cases, we describe and study the variability in reachability fronts and

time-optimal paths. The numerical parameters are listed in Table 5.2.

5.3.1 Test Case 1: Stochastic steady-front with uncertain flow strength

The first test case is a canonical flow - a steady zonal jet with uncertain flow strength. In

addition to being a good candidate for developing and testing numerical schemes, this flow

scenario is commonly encountered in the ocean. For example, the crossing of a shelfbreak

front (Subramani et al., 2017a) or of channels (Subramani et al., 2017b) can be idealized by

175



this canonical flow. Hence, studying the properties of time optimal paths in such flows is a

valuable first step for planning in realistic ocean flows later on.

The domain, flow configuration (mean, modes, and coefficients), and start and end points

are provided in Fig. 5-2. The front is a steady jet flow from west to east, that is confined and

constant in the region 40 < y < 60. The strength of the flow is a random variable uniformly

distributed from 0.5 to 1.5 within the jet proper. The flow is zero elsewhere in the domain.

To represent the stochastic steady front with a uniformly distributed uncertain strength,

we need only one DO mode for velocity, i.e., n,, = 1. We utilize nr = 2,000 realizations

to represent the uniform PDF of flow strength (see Fig. 5-2a). We consider missions with

a vehicle moving at a non-dimensional nominal speed of F(t) = 1, V t = [0, oc). The start

point is (150,20) and the three targets are (90,80), (150,80), and (210,80). We compute

the reachable sets and fronts by solving the stochastic DO level-set equations (5.6), and

time-optimal paths by solving the backtracking equation (5.2).

First we verify the solution of eqns. (5.6) by comparing it to the solution of eq. (5.1)

computed by the MC method. Then we study the properties of the reachable sets, fronts

and time-optimal paths. Some of the results in the present chapter are also in Wei (2015).

Verification of the DO solution

To verify the DO solution, we first compute the corresponding MC solution and then compare

the two. The MC solution is obtained by solving the level-set PDE for each of the n,

realizations of the velocity field separately. We look at the differences in arrival time at the

target (210,80) and in the reachability front of all realizations. Fig. 5-3 shows the histogram

of relative error in arrival time at the target (210,80). The arrival times computed by the

DO method are nearly identical to the corresponding times computed by the MC method.

26.55% of the realizations have zero error and 82.8% of realizations have less than 0.1% error

in arrival times. The maximum error is 0.24%, which is 0.15 non-dimensional time or three

discrete time-steps. Overall the error in arrival-time is negligible, especially considering that

the DO method is 4 orders of magnitude faster than the MC method.

To quantify the difference in the reachability front, we utilize the discrete Frechet dis-

tance (Alt and Godau, 1995; Danziger, 2011; Subramani and Lermusiaux, 2016) which mea-

sures the maximum distance between two discrete curves in 2-D. Fig. 5-4 shows the discrete

Frechet distance normalized by the grid spacing for all realizations, plotted at four non-
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dimensional times. All Frechet distances are less than the grid spacing, which indicates that

the reachability front computed by the DO and MC methods are identical and the errors

are less than or of the order of the spatial discretization. We also compared qualitatively by

plotting the reachability fronts computed by both methods for some characteristic realiza-

tions and observed that DO and MC compute identical reachability fronts (not shown here,

see Wei (2015)). We thus verified that the reachability front and arrival times computed

using the DO level-set equations are accurate for our applications.

Analysis of stochastic reachability fronts and time-optimal paths

Fig. 5-5 shows the distribution of the stochastic reachability fronts computed by solving the

stochastic DO level-set eqs. (5.6). Each reachability front is colored with the flow strength of

that realization. The six panels show snapshots of the spatial distribution of the reachability

fronts at six non-dimensional times.

There is no uncertainty in the flow field outside the jet proper. Hence the reachability

fronts for all realizations are identical until the time when they first experience the uncertain

flow. As shown in Fig. 5-5b, the part of the reachability fronts in the jet proper spreads

out while the part that has not yet reached the jet remains identical for all realizations. As

time progresses, the spread in the reachability fronts increases as each flow realization has a

different flow strength (Fig. 5-5c-f). Most notably, there is a locus of points where pairs of

reachability fronts corresponding to different flow realizations cross-over in Fig. 5-5c and d.

For target points downstream of this locus of cross-over points, the higher the flow strength,

the faster the vehicle arrives at the target. On the other hand, for target points upstream of

this locus, the lower the flow strength of the stochastic jet, the faster the arrival-time at the

target. In the former situation, the flow aids the motion of the vehicle to the target and thus

stronger flows are favorable; however, in the latter situation, the flow hinders the motion of

the vehicle to the target and thus weaker flows are favorable. By t = 75 (Fig. 5-5d), vehicles

in all flow realizations have arrived at the target (150,80). By t = 100 (Fig. 5-5e), vehicles

in all flow realizations have crossed the target (210,80) also and the reachability front of the

weakest flow strength is just arriving at the target (90,80). By t = 125 (Fig. 5-5f), vehicles

of almost all flow realizations have crossed (90,80).

Fig. 5-6 shows the stochastic time-optimal paths for all three targets. As before, each

path is colored with the strength of the flow realization corresponding to that path. The
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spread of the paths increases progressively as the target moves upstream from the start

point. The spatial distribution of the time-optimal paths to target (210,80) is narrow. In

other words, the sensitivity of the time-optimal paths to errors in the flow field prediction

is low. On the other hand, the spatial distribution of the time-optimal paths to (90,80) is

wide. The sensitivity of the paths to errors in the flow field prediction is higher than the

other two targets. For this test case, the more upstream the end point is, the larger the

effects of the flow strength uncertainty is on the time-optimal paths.

5.3.2 Test Case 2: Stochastic double-gyre barotropic quasi-geostrophic

circulation

We now consider stochastic time-optimal path planning for vehicles navigating in stochastic

flow predictions from the stochastic DO level-set PDE simulations. For this test case, we sim-

ulate the idealized near-surface wind-driven barotropic quasi-geostrophic double-gyre ocean

circulation at mid-latitudes, purposely similarly to Subramani and Lermusiaux (2016), but

now with uncertain barotropic initial conditions. The deterministic winds (e.g., mid-latitude

easterlies and trade winds in the northern hemisphere) drive a zonal jet eastward (e.g., the

Gulf Stream or Kuroshio) with a cyclonic gyre to its north and an anti-cyclonic gyre to its

south. Such a circulation is governed by the following non-dimensional stochastic barotropic

quasi-geostrophic model (e.g., Pedlosky, 1998; Cushman-Roisin and Beckers, 2011), written

as conservation of momentum in the Langevin form,

v (x, t; W) + V - (v(x, t; W)v(x, t; W)) + f k x v(x, t; W)
at

- Vp(x, t; W) + 1V2v(x, t; w) + ar, (5.7a)
Re

V -v(x, t; w) = 0, (5.7b)

v(x, 0; W) = vo(x; W), (5.7c)

where Re is the Reynold's number, f is the Coriolis coefficient, and a the strength of the

wind stress. For the Coriolis coefficient, we employ a -plane approximation f = fo + 1y

with fo = 0. We utilize a horizontal length scale L = 106 m, vertical length scale D = 103 m,

velocity scale U = 1.98 cm/s, time scale T = 1.6 yrs, density p = 1025 kg/m3, stress scale

To = 0.16 MPa, eddy viscosity AH = 19.77 m2 /s, and Oo = 1.977 x 10-11 ins. This leads to
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non-dimensional numbers Re = U= 1, 000, a = = 1, 000, and # = ioL2/U -1,000.

A deterministic non-dimensional steady zonal wind stress, -r = [- cos 27ry , 0] T, forces

the flow in the basin. The DO equations corresponding to the stochastic barotropic quasi-

geostrophic dynamics (eq. 5.7) are provided in D.

We simulate the flow in a basin of size 1,000 km x 1,000 km by solving eq. D.1 and

using the relevant numerical parameters in Table 5.2. The barotropic zonal and meridional

velocities are initialized (eq. 5.7c) from a spatial correlation kernel with a length scale of 500

km and uniform variance. Five velocity DO modes and 5000 DO realizations are utilized

(Table 5.2), and the simulation is spun-up for 1 non-dimensional time, i.e., 1.6 yrs. For

path planning, we utilize the next 13.5 days of stochastic flow. We consider a vehicle with

a nominal speed of 40 cm/s (Rudnick et al., 2004, e.g.). Fig. 5-7 illustrates the DO mean,

DO modes, and marginal PDF of the DO coefficients for the flow field at the beginning (t

- 0 days) and end (t = 13.5 days) of the planning horizon.

Over the 13.5 day period, the mean flow is a strong zonal jet from east to west with a

cyclonic gyre to the north of the jet and an anti-cyclonic gyre to the south (Fig. 5-7 Mean).

From the variance of the coefficients (Fig. 5-7 Variance of Coeffs.), we see that Mode 1 has

the most stochastic energy and explains the broad features of the uncertainty in the flow.

Mode 1 has two zonal jets and three gyres (Fig. 5-7 Mode 1). The two jets are located north

and south of the zonal jet of the mean. The stochastic coefficient corresponding to this

mode has a bimodal distribution. For positive coefficients, the southern jet (0.2 < y < 0.5)

contributes a flow from west to east and the northern jet (0.5 < y < 0.8) from east to west.

For negative coefficients, the direction of this contribution is reversed. The northern and

southern jets can be locally considered to be similar to the stochastic front crossing example

(Test Case 1). Higher positive (negative) coefficients correspond to greater variation from the

mean in the (opposite) direction of the modes. Modes 2-5 and their coefficients contribute

to non-symmetric flow realizations (Fig. 5-7 Mode 2-5), such as the non-symmetric wind-

driven gyres seen in the North Atlantic (e.g., Gangopadhyay and Robinson, 1997; Dijkstra

and Molemaker, 1999). Two realization with most negative Coeff.1 (Realiz. #1) and with

most positive Coeff. 1 (Realiz #5000) are shown in Fig. 5-8. Both these and 4,998 other

realizations are all simulated by one DO flow field simulation (C.1).
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Analysis of stochastic reachability fronts and time-optimal paths

Now we plan stochastic time-optimal paths from a start point (0.2,0.2) to the target (0.4,0.8).

Fig. 5-9 illustrates the evolution of stochastic reachability fronts (i.e., zero level-set contours)

over the planning horizon, showing snapshots at nine discrete times. Each flow realization

has a reachability front and all such fronts are computed by one DO simulation. Overall,

the reachability front gets advected by the mean flow, but individual realizations experience

the effect of the modes and coefficients of the flow. As such, the reachability fronts spread,

leading to a density distribution (Fig. 5-9). The mean double-gyre advects the level-sets, and

hence the reachability fronts are advected clockwise in the anti-cyclonic southern gyre and

clockwise in the cyclonic northern gyre. To study the spread, we look at Fig. 5-9. Here, the

reachability fronts are overlaid on streamlines of velocity DO mode 1, vi (x, t), and colored

with velocity DO coefficient 1, pI 1 (t; w). The initial spreading of the reachability fronts

(Fig. 5-9b,c,d) in the southern part of the domain (y < 0.5) is due to the flow contribution

by the southern jet of velocity DO mode 1. The reachability fronts corresponding to positive

coefficients are advected to the east more than those corresponding to negative coefficients.

The spreading of the reachability fronts in the northern part of the domain (y > 0.5) (Fig. 5-

9f-i) is due to the flow contribution by the northern jet of velocity DO mode 1. Here, the

effect on the reachability fronts is opposite to the effect due to the southern jet, i.e., more

positive coefficients are advected to the west more than the realizations corresponding to

more negative coefficients. The spread of the reachability fronts in the strong mean zonal

jet (approximately 0.45 < y < 0.55) is not affected much, as the contribution to the flow

by all velocity modes in this region is weak (Fig. 5-9c-f). The finer details in the shape of

the reachability fronts are due to contributions of the velocity modes with lower stochastic

energy (modes 2-5).

Next, we study the spatial distribution of the time-optimal paths (Fig. 5-10). In Fig. 5-

10a, each path is colored with the corresponding flow realization's velocity DO coefficient

1, p1 (t; w). In Fig. 5-10b, each path is colored with the arrival-time for that path. All

paths cross the strong mean zonal jet by riding the anti-cyclonic southern gyre first and

then the cyclonic northern gyre. The spread in the paths is a result of the variability in

the reachability fronts as described above. The most negative coefficient p1(t; w) defines the

western edge of the spatial distribution of paths and the most positive p1,(t; w) defines the
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eastern edge as seen in Fig. 5-10a. When paths are colored by the arrival time (Fig. 5-10b),

one sees that the arrival time for paths that are very different spatially (and corresponding

to different flow realizations) can be nonetheless similar. This is due to the complex PDF

of the stochastic velocity field. In this test case, the arrival time range varies from 12.1 to

13.6 days. For reference, under no flow conditions, a vehicle with a speed of 40 cm/s would

take 18.3 days to travel between the start and target points considered in this test case 2.

The examples so far also show that the time-optimal path can be very sensitive to the

uncertainty in the flow field. A strength of the stochastic DO level-set equations is that

they allow the rigorous prediction of this sensitivity in a computationally efficient manner.

The examples also raise the need of computing risk-optimal paths in uncertain flows, a topic

addressed in (Subramani and Lermusiaux, 2017).

5.3.3 Test Case 3: Stochastic flow past a circular island

In the third test case, we consider time-optimal path planning in a stochastic flow be-

hind a circular island in a channel. Fig. 5-11 shows the domain and flow configuration

(vorticity overlaid with streamlines). The flow is governed by the stochastic barotropic

quasi-geostrophic equations eqs. 5.7c, but with f = 0 and r = [0, O]T. We model a channel

16 km x 6 km with a circular island of diameter 1 km. Here, we utilize a turbulent eddy

viscosity AH = 10 m2/s, length scale L = 1 km, velocity scale U = 1 m/s, and time scale

T = 1,000 s, leading to a non-dimensional Reynold's number of 100. We consider a deter-

ministic barotropic inlet into the channel of v = [1, 0]T M/s on the western boundary. The

northern and southern boundaries have free-slip wall conditions and the eastern boundary

has open conditions. The barotropic initial conditions are generated from a covariance ker-

nel with a spatial correlation length scale of 5 km in the zonal direction and 2 km in the

meridional direction. 8 velocity DO modes and 10,000 DO realizations are employed here

(Table 5.2). The simulation is spun-up until stochastic eddies are generated downstream

from the island. Then, the flow for 1.5 h (non-dimensional time of 5.4) is considered for

path planning.

Fig. 5-11 shows the velocity mean (row A), the first two velocity DO modes (row B),

marginal PDF of the corresponding DO coefficients (row C), and the variance of first eight

DO modes (row D). Each column of Fig. 5-11 shows the above quantities at t = 0, 2,700,

and 5,400 s. From the decay in variance (row D), we see that most of the flow uncertainty is
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captured by the DO modes 1 and 2, and hence other modes and coefficients are not shown

(but we used 8 modes). The mean flow accelerates to the south and north of the island

as it is confined by the channel and has almost zero magnitude in the lee just behind the

island. The stochastic initial conditions result in uncertainty in the eddy strength, shedding

frequency, and whether the eddies are first shed to the north or south of the island. The

modes 1 and 2 have eddies downstream from the island which together with the coefficients

explain the uncertainty in the flow downstream.

Fig. 5-12 shows two realizations corresponding to the most negative (Realiz. #1) and

positive (Realiz. #10,000) coeff. 1. We see that in Realiz. #1, eddies shed to the north of

the island while for realiz. #10,000, they shed to the south of the island.

Analysis of stochastic reachability fronts and time-optimal paths

Now we plan stochastic time-optimal paths for navigating a propelled vehicle with a nominal

speed of 1 m/s from a start point (2,3) upstream of the island to six possible target points

(see Figs. 5-11-5-12: the start point is indicated by circular markers and targets by star

markers). Fig. 5-13 shows the evolution of the stochastic reachability front overlaid on

streamlines of velocity modes 1 (column A) and 2 (column B). In each plot, we color the

reachability fronts with their respective coefficients. The level-sets do not grow west of the

start point as the vehicle speed and the mean flow there are equal and opposite, making the

reachability front stationary at the start point. Until t = 1, 800 s, the reachability fronts

for all flow realizations are almost identical as the flow uncertainty in the reachable sets is

insignificant (Fig. 5-13A.i, B.i). The shape of the reachability fronts is set by the mean flow

between t = 1, 800 and 2, 400 s. The reachability front grows normal to itself at the nominal

vehicle speed in the close-to-zero mean flow region behind the cylinder (Fig. 5-13A.ii, B.ii).

After t = 1, 800 s, the spreading of the reachability fronts due to the effect of velocity DO

modes start. The mean flow advects all the reachability fronts to the east. From t = 3, 000 s,

the reachability fronts start splitting into two groups roughly corresponding to positive and

negative values of coefficient 1. At t = 3,600 s, the group of reachability fronts with positive

coefficient 1 have a kink near y = 3.5 and those with negative coefficient 1 have a kink near

y = 2.5 corresponding to the eddy direction (Fig. 5-13A.iv). At t = 4, 500 s, the reachability

fronts have two groups corresponding to positive and negative coefficient 2 (Fig. 5-13A.v).

At t = 5, 400 s, the behavior is similar to t = 3, 600 s, with two distinct groups of reachability
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fronts corresponding to positive and negative values of coefficient 1.

Next, we study the spatial distribution of the time-optimal paths (Fig. 5-14). In Fig. 5-

14, column A has all paths colored with velocity coefficient 1, and column B has all paths

colored with velocity coefficient 2. Row i has all paths to target 2, row ii to target 5, and

row iii to all other targets. Paths to targets 1, 3, 4, and 6 (row iii) have little variance,

since these paths are mostly outside the regions of flow uncertainty. Paths to target 5 (row

ii) have the maximum variance followed by paths to target 2 (row i), as these are affected

by the flow uncertainty. There are two sets of paths: one set that goes north of the island

and another that goes south. The combination of velocity modes and coefficients create

flow realizations that lead to northern paths or southern paths. This bifurcation mirrors

the uncertainty in eddy shedding downstream from the island. An error in estimating the

direction of eddy shedding will result in large errors in the time-optimal path predictions to

targets 2 and 5 (e.g., north vs. south) for this test case. However, predictions to targets 1,

3, 4, and 6 are largely unaffected by such an error. This illustration quantitatively confirms

the fact that sensitivity of path predictions depends not only on the flow itself but also on

the target locations, and all such paths and sensitivities can be computed by solving our

equations. Notably, an advantage of our methodology is that only one reachability front

simulation is required for one start location and start time. The paths to multiple targets

are obtained by solving the backtracking stochastic ODE eq. 5.2, which is very inexpensive

to solve.

Fig. 5-15 shows the distribution of arrival times at the six targets. As expected from

the distribution of time-optimal paths, the distribution of arrival times at targets 1, 3, 4,

and 6 are tighter compared to other two targets. Target 5 indeed has the most variance in

arrival time, and the distribution is bimodal similar to the bimodal distribution of velocity

DO coefficients 1 and 2.

5.4 Conclusion

We obtained and applied fundamental equations for time-optimal path planning in uncertain,

dynamic and strong flows. We first presented the stochastic level-set PDEs that govern

the exact evolution of reachability fronts for vehicles navigating in uncertain, strong, and

dynamic flow fields. We then developed efficient stochastic dynamically orthogonal level-
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set PDEs that solve the above equations in a reduced dynamic subspace, providing several

orders of magnitude computational speed-up when compared to direct Monte Carlo methods.

To compute stochastic time-optimal paths, we utilized the governing stochastic particle

backtracking ODE. We then applied the equations to compute stochastic reachability fronts

and time-optimal paths in three different scenarios: a steady-front of uncertain strength, a

stochastic double-gyre circulation, and a stochastic flow past a circular island. We utilized

the first test case to verify that our DO level-set equations can compute the distribution

of stochastic reachability fronts and time-optimal paths as accurately as traditional Monte

Carlo methods. In the second case, we quantitatively explained the effect of the first DO

velocity mode (with the most stochastic energy) on setting the shape and distribution of the

reachability fronts and time-optimal paths. We also showed that the paths corresponding

to different flow realizations can have large spatial differences but similar arrival times,

due to the complex PDF of the stochastic velocity fields. In the third case, we described

how the variance of time-optimal paths and arrival times depended mostly on the first two

DO velocity modes. We showed that the variability could be large due to the uncertainty

in estimating the direction of eddy shedding for targets directly downstream of an island.

Importantly, all these paths are computed by one simulation of the stochastic DO level-set

equations.

Overall, our analysis offers insights into the behavior of vehicles navigating in canoni-

cal uncertain flows often encountered in coastal ocean regions. In addition to computing

stochastic reachability fronts and time-optimal paths, the new equations provide a rigorous

framework for quantifying the sensitivity of time-optimal paths to variability and errors in

flow field predictions. In the future, our methodology can be applied with realistic uncer-

tainty flow predictions (e.g., Lermusiaux et al., 2017b; Subramani et al., 2017b, ,Chapter 2).

The stochastic DO level-set equations can be augmented with decision theory to compute

risk-optimal paths for vehicles navigating in uncertain flow fields. Even though we empha-

sized the navigation of autonomous vehicles in ocean flows, the methodology and equations

are general: they can be utilized for aerial vehicles, land robots, or ships (e.g., Mannarini

et al., 2016).
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Start (x.)
v(x,t;w)

F(t )h(t ;w )

X P(x,, t; W) U

V

Target (xj)

Figure 5-1: Schematic of stochastic time-optimal path planning setup: Our goal is to compute

the distribution of reachability fronts for vehicles starting from x, in an uncertain flow field

v(x, t; w), and the distribution of time-optimal paths Xp(x,, t; w) to xf. The effective

velocity, U experienced by the vehicle is the vector sum of the vehicle's forward motion

F(t)h(t) and the background flow V.

Mean Mode I Coefficient 1

Figure 5-2: Mean, Mode, and PDF of coefficient for the DO decomposition of the velocity

field used in Test Case 1: The zonal jet is from West to East between y = 40 and y = 60,
and has an uncertain strength of uniform density distribution with lower limit 0.5 and upper

limit 1.5. The velocity is 0 elsewhere in the domain. The start point is marked with a circular

marker and three end points with a star marker.
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Figure 5-3: Cumulative histogram of relative error in arrival-time (between DO and MC

solutions) for Test Case 1: 82.80% realizations have a relative error in arrival-time (between

the DO and MC solutions) of less than 0.0008 (0.1%), and the maximum relative error across

all realizations is 0.0024 (0.24%). This error is negligible for the 4 orders of magnitude

computational speed-up achieved by the DO level-set method.
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Figure 5-4: Frechet distance (normalized) between reachability fronts computed by the MC

and DO methods for Test Case 1. The difference between the reachability front computed

by DO and MC increases with time, but always remains less than the spatial resolution. The

difference can be further reduced by increasing the number of DO modes if the application

requires higher precision. Frechet distances are normalized by grid spacing.
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Figure 5-5: Stochastic reachability fronts for Test Case 1: The reachability front for each of

the flow realizations is colored with the strength of that flow realization.
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Figure 5-6: Stochastic time-optimal paths for Test Case 1: All time-optimal paths are colored

with the flow strength of the corresponding flow realization. The variability of the time-

optimal paths is greatest for the target point upstream of the start point.
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Figure 5-7: Stochastic flow field for Test Case 2: The mean field and variance of the DO coefficients,
then the 5 DO mode fields and the marginal PDF of the corresponding DO coefficients of the stochastic
double-gyre flow field are shown at the beginning and end of the planning horizon. Streamlines are overlaid
on a color plot of the flow magnitude (color axis in cm/s) for the DO mean and modes. The x- and y- axes
have units of 1,000 km. Realizations can be constructed by adding the mean to the sum of the product of
each mode with a sample from the PDF of the corresponding coefficient.
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Figure 5-10: Stochastic time-optimal paths for Test Case 2: The time-optimal paths are
colored with (a) the velocity DO coefficient 1, M1 (t; w), and (b) the arrival time (in days) at
the target shown. x- and y- axes are in thousands of km.
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Chapter 6

Risk-Optimal Path Planning in

Stochastic Dynamic Environments

6.1 Introduction

In recent years, the use of autonomous platforms such as Autonomous Underwater Vehicles

(AUVs), gliders, floats, drones, Unmanned Aerial Vehicles (UAVs) for underwater and aerial

applications have increased. These vehicles operate in dynamic environments with strong

and uncertain currents/winds that affect their motion. For efficiently piloting these vehicles

between any two locations, it is important to utilize environmental predictions to plan paths

that optimize travel time, energy consumption, data collection and/or safety. Of course, such

environmental predictions are often uncertain and path planning has to rigorously account

for such probabilistic predictions, if available. Recently, we developed governing stochastic

partial differential equations and their efficient stochastic Dynamically Orthogonal (DO)

counterparts for time-optimal path planning in uncertain, strong and dynamic flow fields.

These equations enable us to compute the probability distribution of reachability fronts and

exact time-optimal paths. Such probabilistic predictions raises important new questions:

What is the optimal path choice under uncertainty?; Can/Should concepts from rational

decision making be utilized for informing this optimal choice?; What is an appropriate risk

measure and optimality criterion for such choices?; Can such paths be computed efficiently?

We answer these questions in the present paper.
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Previous Progress Traditionally, path planning literature has focused on land based

robots in stationary environments (e.g., Hwang and Ahuja, 1992; LaValle, 2006; Latombe,

2012). However, the major challenge for marine and aerial platforms is that they are ad-

vected by the uncertain, strong and dynamic currents/winds. Several authors have extended

many of the algorithms for static environments to plan paths of autonomous vehicles in dy-

namic environments (see e.g., (Lolla et al., 2014b; Pereira et al., 2013) for reviews). For

example, graph based search methods such as modified Dijkstra's algorithm (Mannarini

et al., 2016), A*-search (Garau et al., 2005), Rapidly-exploring Random Trees (RRTs) (Rao

and Williams, 2009), kinematic tree-based navigation (Chakrabarty and Langelaan, 2013),

stochastic planners with uncertain edge weights (Wellman et al., 1995) and stochastic sur-

face response methods (Kewlani et al., 2009) have been developed. Other techniques such

as nonlinear optimization methods (Kruger et al., 2007; Witt and Dunbabin, 2008), sequen-

tial quadratic programming (Beylkin, 2008), evolutionary algorithms (Alvarez et al., 2004;

Aghababa, 2012), fast marching methods (Sethian, 1999; Petres et al., 2007), wave front

expansion (Soulignac et al., 2009; Thompson et al., 2010) have been used with varying de-

grees of success. Monte Carlo methods to account for uncertainties and compute statistics of

optimal trajectories have been used with potential field methods (Barraquand and Latombe,

1990) and two point boundary value problems (Wang et al., 2016). See (Lermusiaux et al.,

2017c, 2016) and references therein for a detailed review. Briefly, the main issue with several

of the above methods is that they are inaccurate, or require application specific heuristics,

or are computationally intractable in strong and dynamic flows. Additionally, rigorously

accounting for uncertainties requires large ensemble sizes for convergence of Monte Carlo

methods, making them computationally very expensive.

To overcome these challenges, recently we obtained fundamental partial differential equa-

tions (PDEs) that govern the evolution of the reachability, time-optimal paths Lolla et al.

(2014b), and energy-optimal paths Subramani and Lermusiaux (2016) in strong and dynamic

currents. We have applied these to compute optimal paths both in realistic data-driven sim-

ulations Lolla et al. (2014a); Subramani et al. (2017a) and with real vehicles Subramani

et al. (2017b). We also developed and implemented efficient variance-optimal reduced-order

stochastic dynamically orthogonal equations for probabilistic predictions of flow fields (Sap-

sis and Lermusiaux, 2009; Ueckermann et al., 2013) and stochastic time-optimal path plan-

ning Subramani et al. (2017c). Notably, our stochastic PDE (S-PDE) approach has certain
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useful advantages: (i) for a given stochastic environmental flow prediction, the computed

stochastic time-optimal paths are exact, (ii) the computed paths naturally avoid stationary

and dynamic obstacles, (iii) the probability of a location being reachable (or non-reachable)

are directly predicted.

From the probability distribution of time-optimal paths, we have to assess the risks and

make a decision of risk-optimal path. This subject of decision making under uncertainty

has been well studied in the fields of economics and management. One widely used model is

the expected utility theory and its several variants as reviewed in Schoemaker (1982). The

key ingredients of this model are the evaluation of the utility cost of the outcome due to a

decision and the probability of that outcome. The expected utility theory can be utilized in

a prescriptive or normative framework to inform optimum decision making under complex

decision scenarios and can be customized to fit the risk behavior of users (Schoemaker, 1982;

Epstein, 1992; Von Neumann and Morgenstern, 2007). Specific utility functions are available

for different risk behavior (e.g. Arrow, 1958; Fishburn, 1988; LiCalzi and Sorato, 2006).

The combination of expected utility theory and robot motion planning has been limited.

For example, RRTs with utility-based random trees have been used for single-query robot

planners (Bry and Roy, 2011). An expectation driven iterative refinement approach with a

heuristic has been proposed for robotic path planning problems (Boddy and Dean, 1989).

A* search has been combined with expected utility (Burns and Brock, 2007). A maximum

utility based central arbiter for Distributed Architecture for Mobile Navigation has been

developed (Rosenblatt, 2000). A risk-aware planner utilizing Markov Decision Process to

minimize the expected risk of surfacing of gliders along paths has been developed (Pereira

et al., 2013).

Goal and Organization Overall, our goal is to combine a rigorous risk optimality cri-

terion grounded in decision theory with our dynamically orthogonal level-set equations to

develop efficient computational schemes to compute risk-optimal paths from a distribution of

stochastic time-optimal paths. We also seek to apply the new schemes to several stochastic

flow scenarios and study the risk evaluation criteria and properties of risk-optimal paths.

The present paper is organized as follows. In Sec. 6.2, we develop the theory and schemes

for risk-optimal path planning. In Sec. 6.3, we apply the new schemes to compute risk

optimal paths for a variety of stochastic flow scenarios. In Sec. 6.4, we conclude and provide
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future research directions.

6.2 Theory and Schemes

6.2.1 Problem Statement

The risk-optimal path planning problem in uncertain flows can be formulated as in Fig. 6-

1. Consider a domain D with a spatial index x, temporal index t, probabilistic sample

space Q, random event w E Q, and probability distribution function pn(.). For a vehicle Q

navigating from start xs to a target xf in a stochastic flow v(x, t; *), let the time-optimal

path distribution be XQ(xS, t; .), and the time-optimal heading distribution be h(t; e). We

define risk-optimal paths as the time-optimal paths that minimize the expected utility cost

of following it in an environment for which it is not the true time-optimal path. We develop

the theory to compute such risk-optimal paths.

6.2.2 Theory of Risk-Optimal Paths

Risk-optimal paths can be obtained in three steps. First, v(x, t; 9) is computed by solving

the DO stochastic barotropic quasi-geostrophic equations (D; Ueckermann et al. (2013))

or DO primitive equations (Chapter 2). Second, XQ(x,, t; o) and h(t; o) are computed by

solving the stochastic dynamically orthogonal level-set Hamilton Jacobi partial differential

equations (eq. 5.6) followed by the stochastic backtracking ordinary differential equation

(eq. 5.2). We developed and applied these equations in Subramani et al. (2017c). Third,

the risk of all path choices XQ(x,, t; *) is evaluated and the risk-optimal path X*(x,, t)

computed by minimizing the risk. Here, we focus on this third step and the other steps are

in Chapter 5.

To evaluate and minimize the risk of following one of the time-optimal path from among

the distribution of time-optimal paths, we employ the expected utility hypothesis (e.g.,

Arrow, 1958; Schoemaker, 1982). The risk corresponding to a path choice is the expected

utility cost accrued when that choice is sub-optimal. The utility cost depends on the error

incurred due to the sub-optimality and how much cost a decision maker assigns to this error,

in accordance with their risk profile. Mathematically, we can formulate the risk evaluation

and minimization problem as follows.

The time-optimal path XQ(xS, t; w) or heading time-series h(t; wl) corresponding to a
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random event wl C Q is exact for the environmental realization v(x, t; WI); however, its

use in another environmental realization v(x, t; Wi) would be sub-optimal, and potentially

infeasible. Let the trajectory achieved by following the waypoints or headings of the optimal

path for wi in wm be XQ(xS, t; wl lm). We define the error incurred due to this path as

e(XQ(x8 , t;wI|wm)) and the cost C(XQ(xs, t;wliwm)) = f(e(XQ(xS, t; wllwm))) to quantify

the effect of this sub-optimality on the decision maker. Here, f is a utility cost function

corresponding to the risk profile of the decision maker. Thus, the risk of utilizing the time-

optimal path XQ(xS, t; wl) is the expected value of Clm, i.e,

R(XQ(xS, t; w1)) = C(XQ(X,, t; W IW))pQ(v(x, t; Wm)) dwm . (6.1)

Then, the risk-optimal path is computed by optimization as

X,*(x,, t) = arg min R(XQ(x, t; w)). (6.2)
XQ(x",t;wJ)

6.2.3 Schemes for Risk Evaluation and Minimization

The specific choice of the error incurred due to sub-optimality and the form of utility cost

function determine the risk evaluation and risk-optimal path selection. For brevity of nota-

tion we use elm and Cm for the error and cost hereafter. There can be several error metrics

corresponding to the operational parameters of interest, and multiple analytical forms of

f corresponding to risk tolerance profiles of the decision maker (e.g., the pilot or mission

designer) (Schoemaker, 1982; LiCalzi and Sorato, 2006). Next we present the schemes we

consider.

Error Metric elm

The purpose of the error metric is to quantify the difference in following a prescribed path

(specified as waypoints or a heading time-series) in an environment in which it is sub-optimal

to the true optimal path for that environment. We consider vehicle operations where the

objectives are either achieving a set of provided waypoints or a heading time-series. In both

operational modes, the optimal path can always be followed in the environmental realization

in which it is truly optimal. For a vehicle programmed to achieve waypoints, the ability to

traverse a non-optimal path depends on whether the currents are stronger than the vehicle's
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forward thrust. If yes, the vehicle does not have local controllability and may get advected

away from the desired path and likely be aborted. If no, then all prescribed paths are

feasible, and differs from the optimal path only in travel time. For a vehicle programmed

to achieve a heading time-series, the vehicle may end up at a different location than its

intended target, when operated in an environment for which the headings are sub-optimal.

To quantify the physical dissimilarity between the paths XQ(xS, t; wiIwm) and XQ(xS, t; w.),

we employ the discrete Fr6chet distance (Eiter and Mannila, 1994; Alt and Godau, 1995)

as the error metric. A zero value of the discrete Fr6chet distance means that the paths are

coincident and higher values progressively imply more dissimilarity.

If the vehicle is programmed with waypoint objectives and is controllable, then XQ (x,, t; W1 IW)

is simply XQ(xS, t; wi) and the physical dissimilarity error metric can be directly computed

from the distribution of optimal paths.

Alternative error metrics are possible for vehicles programmed with waypoint objectives

or heading objectives. For example, for a vehicle programmed with waypoint objectives,

the sub-optimal trajectory reaches the target in time T(xf;wlIwm) instead of T(xf; win).

Thus, the error metric could be IT(xf; wlIwm) - T(xf; ..)1. For a vehicle programmed

with the heading objective, an alternative error metric could be the error in arrival location.

Specifically, following XQ(xS, t; wIWm), the vehicle ends up at x instead of xj and the error

metric is the distance jxj - x, .

Usually, if the vehicle is not controllable as it gets caught in a current stronger than the

vehicle speed, the mission gets aborted. Here, the error metric could be 1 or 0 depending

on if the mission was aborted or not.

All the above metrics have the property that if the path followed was the exact time-

optimal path for the realized environment then the error is zero. For non-optimal paths, the

error gets progressively higher the farther the path choice is from exact time-optimality.

Additionally, they have been chosen based on our experience with real time missions with

REMUS 600 AUVs (Subramani et al., 2017b; Mirabito et al., 2017; Edwards et al., 2017).

Of course, other error metrics are also possible. Some examples are those based on the

maximum background flow encountered along the path, or minimum bathymetry clearance

along the path, or number of times a vehicle has to performs a particular maneuver such

as surfacing for a glider. Specific error metrics for individual missions and vehicles can

be formulated based on an accurate performance characterization of the vehicle utilized, its
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navigation capabilities, fin configurations and thresholds for satisfying navigation objectives.

In the present paper, our goal is to provide a general theory and a recipe for risk-optimal

path design and prediction. One simply has to change the computation of elm for new

requirements.

Analytical Forms of the Cost Function f

The analytical form of the cost function f that translates the error to a cost is important

to characterize the risk tolerance of vehicle operators. A concave cost function implies

risk-seeking preferences for choices within the range of concavity, a convex cost function

implies risk-seeking preferences for choices and a cost function with a constant slope is a

risk-neutral preference for choices (Fishburn, 1979; Schoemaker, 1982; LiCalzi and Sorato,

2006; Von Neumann and Morgenstern, 2007). We employ f(eim) = log(1 + elm) for risk

seeking, f(elm) = elm for risk neutral and f(elm) = -1 + exp(elm) for risk averse behavior.

6.2.4 Algorithm

The algorithm to implement the theory and schemes developed in Sec. 6.2.2 has four major

steps as described in Table 6.1. See Table 5.1 for our notation. A subscript DO is used to

indicate that a DO (or KL) expansion and truncation has been applied to the corresponding

stochastic variable.

6.3 Applications

In this section we illustrate the working of our schemes by applying them to a series of

illustrative canonical flows of increasing complexity. We present four test cases. In the

first, we consider an autonomous vehicle crossing a simulated stochastic steady front (in the

ocean or atmosphere) similar to the one we have used to illustrate our methods in previous

path planning papers (Lolla et al., 2014b; Subramani and Lermusiaux, 2016; Subramani

et al., 2017c). Here, we consider a bi-modal Gaussian Mixture Model (GMM) PDF for

the uncertain flow strength. In the second, we consider an autonomous vehicle navigating

in an idealization of a flow exiting a strait/estuary (in the coastal ocean) or wind blowing

through a widening constriction of an urban canopy (such as from a narrow street onto

a wide street both lined with tall buildings). In the third, we consider the idealization
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Table 6.1: Risk-Optimal Path Planning: Algorithm
I. Probabilistic Flow Prediction

1. Obtain the discrete probabilistic prediction of the velocity field vDo(x, t; r) for r ,1 -- r by solving
the discrete stochastic DO barotropic quasi-geostrophic equations (eqs. D.1) or discrete stochastic
DO Primitive Equations (Chapter 2).

II. Stochastic Time-Optimal Path Planning

1. Compute stochastic maximum reachability fronts <kDo(x, t; r) for r = 1 - n, all at once by solving
the stochastic DO level-set equations (eq. 5.6) with VDO(X, t; r).

2. Compute discrete time-optimal paths XQ(xS, t; r) and time-optimal headings h(t; r) for all r = 1 - -nr
using the backtracking equation (eq. 5.2).

III. Risk Evaluation and Optimization

1. Simulate the trajectories XQ(xS, t; 1rm) for waypoint objective XQ(x8 , t; 1) or heading objective h(t; r)
for all I = 1 ... nr. Under the conditions of complete controllability, XQ(xS, t; urm) = XQ(xS, t; 1).

2. Compute the error metric matrix elm as the discrete Frechet distance between XQ(xS, t; lrm) and
XQ(xs, t; m) for all 1, m = 1 ... n,, or one of the alternative error metrics defined in Sec. 6.2.3

3. Compute the cost matrix Cim = f(elm) for all 1, m = 1 ... n,.

4. Compute the risk of choosing the path XQ(xs,t; 1) as R = _ Em. Cm..

5. Find 1 that minimizes Rl. Then, the risk optimal path X* (x,, t) = XQ(x., t; 1).

IV. Iterate

1. If there is evidence that the discrete realizations r = 1 ... n, are not sufficient to describe the prob-
ability density of v(x, t; o), augment the realization space by adding more discrete realizations and
iterate.

of a quasi-geostrophic wind driven double gyre commonly observed due to wind activity

in the oceans. In the fourth, we consider the idealization of a flow past a circular island.

The last two test cases are the same as in our previous paper Subramani et al. (2017c) on

stochastic reachability and time-optimal path planning. We use the same distribution of

flows and time-optimal paths as obtained in Subramani et al. (2017c), with the addition of

risk evaluation and optimization to compute risk-optimal paths.

6.3.1 Stochastic Steady Front with Uncertain Flow Strength

First we consider a canonical stochastic flow scenario - a steady front with an uncertain

flow strength described by a Gaussian Mixture Model PDF. This is a standard illustrative

example we consider in all our previous publications to demonstrate our methods. Moreover,

it is an idealization of missions where an AUV or Glider crosses a shelfbreak front Subramani

et al. (2017a) or channel Subramani et al. (2017b). Here, we consider an non-symmetric

PDF for the flow strength in order to illustrate the key aspects of our risk-optimal planning.

Fig. 6-2a shows the domain and Fig. 6-2b shows the PDF of the flow strength. The domain

is a non-dimensional square basin of size 100 x 100 with an uncertain jet flowing from east

204



to west and confined between 40 < y < 60. The direction of flow is considered known and

only the strength is uncertain. The PDF of the flow strength is a Gaussian Mixture Model

with two Gaussians with non-dimensional mean, standard deviation and mixture weights of

(10,3,0.65) and (20,1,0.35) respectively. n5 ,, = 1 mode is sufficient to describe the variability

in the flow. We utilize n,, = 5000 realizations sampled from the GMM distribution of the

stochastic coefficient corresponding to mode 1. This completes step I of Table. 6.1. Then,

we simulate the stochastic reachability and time-optimal path distribution for a vehicle with

non-dimensional speed 20 starting at (50,20) and heading to a target (50,80). The start

point is depicted by a circular marker and the target by a star marker in all our figures.

Eq. 5.6 is solved to obtain the distribution of stochastic reachability fronts. In Fig. 6-3a-

e, five discrete snapshots during the evolution of the reachability front are shown. Each

realization of the reachability front is colored by the jet strength of the corresponding flow

realization. Fig. 6-3f shows the distribution of the time-optimal paths computed by solving

eq. 5.2. This completes step II of Table. 6.1. Next, we compute the risk-optimal paths by

completing step III of Table. 6.1.

Risk-Optimal Paths

Waypoint objective For vehicles programmed with a waypoint objective and under con-

ditions of complete controllability, no new trajectory simulation is required. We simply

compute the error metric matrix as the dissimilarity matrix of all time-optimal path real-

izations. This elm matrix is of size nrr, x nr, and contains the pair-wise discrete Frechet

distance between pairs (1, m) of paths for all 1, m= 1 ... nr,0. The utility cost matrix Cim for

the required cost-functions can then be computed from elm. Fig. 6-4 row 1 shows the utility

cost matrix for a risk-seeking cost function (column a), risk-neutral cost function (column b)

and risk-averse cost function (column c). The cost functions are computed by normalizing

the errors to lie between 0 and 128 and applying the concave function f(e) = log 2(1 + e)

to model risk-seeking behavior, the constant slope function f(e) = e to model risk-neutral

behavior and the convex function f(e) = 2' to model risk-averse behavior. In the chosen

range, the chosen functions exhibit concavity and convexity enough to model risk-behaviors

(see, e.g., Schoemaker, 1982). The i-axis of the cost matrix corresponds to the waypoint

objective choice and the m-axis corresponds to the realizations of the flow field. The risk

of the waypoint objective choices is then computed by marginalizing over m and obtaining
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the risk curve shown in row 2. The red point is the minimum risk choice. In row 3, each

waypoint objective choice is colored by its risk, and the risk-optimal waypoint objective is

shown in black.

Fig. 6-5a shows the three risk-optimal waypoint objective choices corresponding to differ-

ent risk behaviors. Fig. 6-5b shows the PDF of the frechet distance between the risk-optimal

waypoint objectives and the true-time optimal path in all realizations of the stochastic flow

environment. The PDF of the errors describes the properties of the risk-optimal paths suc-

cinctly. By following the risk-seeking path, we have a high probability of having low errors,

but also a high probability of having high errors. On the other hand, by following the risk-

averse path we have higher certainty of making medium errors. The risk-neutral path has

error characteristic in between the risk-seeking and risk-averse choices. Hence, depending

on the risk appetite of the operator, one of the risk-optimal choices will be appropriate. An

aggressive operator may want to bet with the risk-seeking choice with the understanding

that, for the realized environment, this choice has a high probability of being close to the

true time-optimal path but also a high probability of being far from the true time-optimal

path. Similarly, a conservative operator may choose the risk-averse choice and have lower

probability of large errors but also for small errors. An ambivalent operator may choose the

risk-neutral choice.

In Fig. 6-6, the errors due to following the risk-optimal choice are visualized on the

other time-optimal paths, if they were the true time-optimal path. This is the physical

visualization of the errors presented as a PDF in Fig. 6-5b.

Heading objective For a heading objective, we simulate the trajectories obtained by

following a particular heading objective choice in all the realizations of the flow. The error

matrix is then computed by the discrete frechet distance between the realized trajectory

and the true time-optimal path for that flow realization. Matrices and risk curves similar to

that shown in Fig. 6-4 can be obtained for computing risk-optimal heading objective choices.

We only show the risk-optimal heading choice and the error characteristics for these choices

here. Fig. 6-7a shows the computed risk-optimal heading choices for our three risk behaviors.

Fig. 6-7b shows the PDF of the error due to following the risk-optimal heading choice. The

error is quantified as the discrete Frechet distance between the trajectory obtained due to

following the risk-optimal heading in all flow realizations and the true time-optimal path
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for that flow realization. Fig. 6-8 shows this error visualized on the trajectories obtained by

following the risk-optimal paths in all the flow realizations. From Fig. 6-8, we see that by

following the risk-optimal heading choice in a flow for which it is sub-optimal results in the

vehicle missing its target. The risk-seeking heading objective choice results in paths that

are close to the true time-optimal path in more flow realizations that the risk-neutral and

risk-averse choices. On the flip side, the risk-seeking choice also leads to paths that are far

from the true-time optimal paths in more flow realizations than the other two choices. As

before, the risk averse choice leads to more certain medium errors.

6.3.2 Stochastic Wind-Driven Double Gyre

As our second illustration we consider a stochastic wind-driven double gyre. This is the

same flow fields that were presented in Subramani et al. (2017c). This choice of test case

is done to ensure continuity of our theoretical development. They are obtained by solving

the quasi-geostrophic DO equations D.1 with n,, = 5 DO modes and n,, = 5,000 DO

realizations. The domain is 1,000 km x 1,000 km discretized into a 100 x 100 regular finite

volume grid. A deterministic zonal wind forcing is applied to drive the double gyre dynamics

initialized with uncertain barotropic velocity components. The flow field for 13.5 days for

a mission involving a vehicle moving at 40 cm/s is considered. Fig. 6-9 shows the mean,

standard deviation and skewness of the velocity fields at three discrete times T = 0, 6.75

and 13.5 days. The perturbations from the DO mean of two extreme realizations are also

shown. These two and the other 4,998 realizations are all simulated by one DO simulations

with DO mean, mode and coefficient equations (see Subramani et al. (2017c)). From the

higher order statistics of the flow fields, we see that the flow exhibits highly non-Gaussian

behavior. The extreme realizations have perturbations in the opposite direction with similar

magnitudes showing that flow realizations with very different features can be simulated by

a single DO realization.

Risk Optimal Paths

As for the previous illustration, here we compute the risk-optimal paths for both waypoint

objectives and heading objectives.
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Waypoint objective Under conditions of complete controllability, we can compute the

utility cost matrix directly from the distribution of time-optimal paths. Results from each

step of the computation are presented in Fig. 6-10. The rows 1 and 2 show the utility cost

matrix and the risk curve. Row 3 shows all waypoint objective choices colored by their

respective risk and the risk-optimal choice in black. The columns a,b and c correspond to

the three risk behaviors: risk-seeking, risk-neutral and risk-averse respectively.

Fig. 6-11a shows the three risk-optimal paths corresponding to different risk behaviors

together. Fig. 6-11b shows the PDF of the Frechet distance between the risk-optimal way-

point objectives and the true-time optimal path in all realizations of the stochastic flow

environment. The properties of the risk-optimal paths are similar to those in the previous

illustration. This shows that our method can be utilized in complex stochastic flow scenarios

efficiently. The information in the PDF of the error is visualized on the physical paths in

Fig. 6-12.

Heading objective The risk evaluation and minimization is completed for vehicles follow-

ing heading objectives. Fig. 6-13a shows the risk-optimal heading objectives and Fig. 6-13b

shows the error PDF due to following the risk-optimal headings in all flow realizations. In

Fig. 6-14, we show the trajectories obtained by following the risk-optimal headings in all the

flow realizations. Here, the paths are colored by the Frechet distance between the obtained

trajectory and the true time-optimal path in that flow realization.

6.3.3 Stochastic Flow Exiting a Strait

As our third illustration we present risk-optimal planning in an idealized stochastic flow sce-

nario encountered in the coastal oceans and in urban environments. In the coastal oceans,

a barotropic jet exiting a strait (or an estuary) into a wider channel creates eddies and me-

anders downstream (Lolla et al., 2015). In urban environments, the wind blowing through

narrow constrictions between buildings into an open area also creates similar dynamic con-

ditions. Such flows can be idealized as sudden expansion flows studied extensively in fluid

dynamics (Cherdron et al., 1978; Durst et al., 1974; Fearn et al., 1990). We consider a 6 km

x 1 km channel with a narrow constriction of length 1/3 km on the east. A uniform jet with

a velocity 50 cm/s is exiting the constriction into the channel. The initial conditions of the

barotropic velocity components in the channel are uncertain and sampled from a Gaussian
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covariance kernel with a decorrelation length scale of 1 km. The simulation is conducted by

solving the quasi-geostrophic DO equations D.1 with nr,, = 10 DO modes and n,,v = 10, 000

DO realizations. The stochastic flow is allowed to develop for 1,500 mins by which time the

flow develops recirculation zones and breaks to either the north or south of the centerline,

depending on the initial uncertain perturbations. The nonlinear dynamics causes the initial

gaussian uncertainty to become non-Gaussian by this time. For our risk-optimal planning,

we consider the flow for the next 100 mins. Fig. 6-15 shows the mean field, and the first

three DO velocity modes and the marginal PDF of the DO velocity coefficients at three

dicrete times T=0, 50 and 100 mins. As can be seen here, the uncertainty in the flow field is

highly dynamic and non-Gaussian, but the mean flow is nearly steady. Such flows are often

encountered in the coastal ocean or atmosphere. Fig. 6-16 shows the standard deviation,

skewness and kurtosis of the velocity field at three discrete times. Also shown are two rep-

resentative realizations with the jet breaking to the south and north. This completes step I

of Table. 4.1.

Stochastic Reachability and Time-Optimal Path Distribution

Our path planning problem is to predict the risk optimal paths of a vehicle with a nominal

relative speed of 25 cm/s traveling from the start point (depicted by a circle in Fig. 6-17)

to five target locations (depicted by stars in Fig. 6-17). Using the velocity DO mean, modes

and coefficients computed above, we solve the stochastic DO level set equations 5.6 to obtain

the distribution of the stochastic reachability fronts. Fig. 6-17 shows the evolution of the

stochastic reachability front at six discrete times, T=16, 33, 50, 66, 83 and 100 mins. In each

panel, the reachability fronts are colored by the DO velocity coefficient 1 of the stochastic

flow field. The time-optimal path distribution is computed from the stochastic reachability

fronts and backtracking eq. 5.2. Fig. 6-18 shows the distribution of the time-optimal paths

to the five targets, each colored with the arrival time at the target. The paths in panels (a)

and (e) have low physical variability but significant arrival time variability. The paths in

panels (c) have high physical variability but low variability in the arrival time and the paths

in panels (b) and (c) have high variability in both the physical paths and arrival times. This

completes step II of Table. 4.1.
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Risk Optimal Paths

For each of the five targets, we complete step III of Table 4.1 to obtain the risk optimal

paths (both waypoint objectives and heading objectives separately). Here, as before, under

assumptions of complete controllability, the error metric can be computed directly from the

distribution of the time-optimal paths. Then, the cost matrix corresponding to different risk

behaviors is computed. Finally, the risk of following each path is evaluated and minimized.

Fig. 6-19 column 1 shows the computed risk-optimal paths that minimize risk-seeking, risk-

neutral and risk-averse cost functions for all the five targets (rows (a) to (e)). Fig. 6-19

column 2 shows the PDF of the errors due to following the computed risk-optimal waypoint

objectives corresponding to the paths in column 1.

Due to the complex and dynamic nature of the uncertainty and path computations, the

different risk-optimal paths show interesting behavior. On the one hand, for targets a and

e, the risk-neutral and risk-seeking paths are physically very close to each other and have

similar error PDFs. On the other hand, for targets b, c and d, it is the risk-neutral and

risk-averse paths that are physically closer. For all targets, the error PDF of the the risk-

seeking and risk-averse paths are similar to the error PDF in other test cases. Our rigorous

probabilistic prediction and risk-optimal path planning framework allows computation of

such complex risk-optimal paths very efficiently.

Fig. 6-20 shows the risk-optimal heading objectives (in column 1) and the error PDF

(column 2) for the five target locations (rows (a) to (e)), computed by completing step III

of Table 4.1.

Fig. 6-21 shows the trajectories obtained by following the risk-optimal heading objectives

in all the flow realizations. Each trajectory is colored by the discrete Frechet distance

between that and the true time-optimal path for that flow realization. Following the risk-

seeking heading objective leads to a higher probability of being both closer and farther to

the true time-optimal path. Following the risk-averse heading objective leads to a high

probablity of medium errors.

6.4 Conclusion

We developed the theory for rational risk-optimal path planning by combining decision

theory and our stochastic time-optimal path planning with stochastic DO level-set equations.
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The schemes and software developed compute risk-optimal paths for vehicles navigating in

uncertain, strong and dynamic flows. The path planning proceeds in three steps: (i) obtain

predictions of the probability distribution of environmental flows, (ii) obtain predictions

of the distribution of exact time-optimal paths for the above flow distribution, and (iii)

compute and minimize the risk of following the above time-optimal paths. Three cost

functions corresponding to risk-seeking, risk-neutral and risk-averse behaviors were utilized

to compute and minimize risk. We illustrated the planning in three stochastic flow scenarios:

stochastic steady front crossing, double gyre and flow exiting a strait. The risk-optimal paths

minimize the error of following the chosen path, if it is not the exact time-optimal path for

that environmental flow realization. Minimizing a risk-seeking cost function results in a path

that has a higher probability of being closer to the exact time-optimal path, but also a higher

probability of being far away from the exact time-optimal path. A risk-averse path on the

other hand has a high probability of medium error, and a low probability of either extremes

(being very close or very far from the exact time optimal path). In complex flow situations,

it is difficult to predict the behavior a-priori as shown in the stochastic flow exiting a strait

example. Here, our methodology allows in the characterization and minimization of the

risks along time-optimal paths. In the future, risk-optimal planning can be integrated with

probabilistic current predictions for real-time missions with real AUVs.
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Figure 6-1: Schematic of minimum-risk time-optimal path planning setup: Our goal is to

compute the time-optimal path with minimum risk under uncertainty for vehicles navigating
from A-x, to B-x1 in an uncertain flow field v(x, t; w). The effective velocity, U experienced

by the vehicle is the vector sum of the vehicle's forward motion F(t)h(t) and the background

flow V.
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Figure 6-2: Domain and the PDF of flow strength for the stochastic simulated front crossing

test case: (a) In a square domain of non-dimensional side lengths 100 x 100, an idealized
stochastic steady front is modeled as a zonal-jet with uncertain strength, flowing from west

to east between y = 40 and y = 60. (b) The PDF of the flow strength is a Gaussian Mixture

Model with two Gaussians with non-dimensional mean, standard deviation and mixture

weight of (10, 3, 0.65) and (20, 1, 0.35) respectively.
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Figure 6-7: Risk-optimal heading objectives for stochastic steady front crossing: (a) The
risk-seeking, risk-neutral and risk-averse heading objective choices. (b) The PDF of errors
due to following the risk-optimal heading objectives. The error is quantified as the discrete
Frechet distance between the path obtained by following the risk-optimal choice and the
true time-optimal path corresponding to that realized environmental flow.
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Figure 6-17: Stochastic reachability front evolution colored by DO velocity coeff. # 1. The
reachability fronts are computed by one DO simulation by solving the stochastic DO level
set equations with the above stochastic DO velocity fields for the stochastic flow exiting a
strait.
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Figure 6-21: Tajectories obtained by following risk-optimal headings in the stochastic flow
exiting a strait: (a)-(e) correspond to the five target locations. The columns correspond
to risk-seeking, risk-neutral and risk-averse waypoint objective choices. Each trajectory is
colored by the discrete Frechet distance between that trajectory and the exact time-optimal
path corresponding to that realization of the environment.

226

a

0

Risk Neutral Path Risk Averse Path

3

Risk Seeking Path



Chapter 7

Conclusions and Future Work

7.1 Key Thesis Contributions

The key contributions of the present thesis can be divided into two broad themes: probabilis-

tic PDE-based regional ocean predictions and fundamental optimal planning. The specific

results are summarized as follows.

1. Probabilistic PDE-based Regional Ocean Predictions

(a) Methodological and computational development

(b) Derivation of continuous and discrete dynamically orthogonal primitive-equations

(c) Efficient serial implementation

(d) Applications in idealized and realistic scenarios

2. Fundamental Optimal Path Planning

(a) Realistic Energy-optimal path planning and analyses in the Middle Atlantic Bight

and Shelfbreak front region

(b) Improvements to schemes and software for stochastic reachability and time-optimal

planning in uncertain, strong and dynamic flows

(c) New theory and schemes for risk-optimal path planning in uncertain flows
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7.2 Collaborative Work

In line with the above theme of the thesis, we also completed collaborative work on the real-

time demonstration of time-optimal path planning in two sea exercises in the Buzzard Bay

and Vineyard Sound regions. The exercises were conducted with REMUS 600 Autonomous

Underwater Vehicles (AUVs) on 21 October and 6 December 2016. Two tests were com-

pleted: (i) 1-AUV time-optimal tests and (ii) 2-AUV race tests where one AUV followed

a time-optimal path and the other a shortest-distance path between the start and finish

locations. The time-optimal planning proceeded as follows. We first forecast, in real-time,

the physical ocean conditions in the above regions and times utilizing our MSEAS multi-

resolution primitive equation ocean modeling system. Next, we planned time-optimal paths

for the AUVs using our level-set equations and real-time ocean forecasts, and accounting for

operational constraints (e.g. minimum depth). This completed the planning computations

performed onboard a research vessel. The forecast optimal paths were then transferred to

the AUV operating system and the vehicles were piloted according to the plan. We found

that the forecast currents and paths were accurate. In particular, the time-optimal vehicles

won the races, even though the local currents and geometric constraints were complex. The

details of the results were analyzed off-line after the sea tests and published in Subramani

et al. (2017b). For energy-optimal path planning, an accurate description of the energy re-

quirement as a function of the motor speed of the AUV is required. Utilizing data collected

in the above real-time sea experiments, we developed and applied machine learning tech-

niques to establish this relationship in Edwards et al. (2017). We also completed numerical

experiments to showcase the applicability of our exact time-optimal path planning software

for autonomous ship interception in the above regions (Mirabito et al., 2017).

The fundamental path planning PDE was extended to ship routing by considering a

spatially and temporally varying ship speed that responded to the predictions of significant

wave height. Such routing requires ship equations that govern the allowed ship speeds and

headings in terms of the waves, currents, and winds. Presently, a simple dynamic ship

model (Mannarini et al., 2016) is used for relating environmental predictions to allowed ship

speeds. We compared the optimal paths computed by our PDEs and by a graph based

search method, in terms of quality of the solution and computational time in Mannarini

et al. (2018).
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7.3 Future Work

The theory, schemes, and software developed as part of the present thesis opens up several

avenues for future research. There are opportunities to do further research on implemen-

tation, application, and adding new capabilities. Some of the important future research

avenues are presented here.

Distributed and Non-Intrusive DO-PE Implementations: The present code is im-

plemented in an efficient serial fashion. However, the data structures and the coding is such

that a distributed implementation with MPI and/or OpenMP can be done with limited

coding effort. The runtime of DO-PE simulations with a large number of modes can be very

attractive with parallel computing.

Another common bottleneck for implementing DO systems for other weather and climate

models is the coding effort required to introduce DO capabilities. In the present thesis we

have outlined a procedure for implementation with minimal coding effort. However, oppor-

tunities exist to develop theory and schemes for a non-intrusive DO-PE implementation.

Here, the idea is to use the forward model as nearly a black-box as possible and extract DO

terms from multiple forward runs of the model.

GMM-DO Filtering and Smoothing with DO-PE: A major motivation for the DO-

PE system is to utilize it for non Gaussian data assimilation Sondergaard and Lermusiaux

(2013a,b); Lolla and Lermusiaux (2017c,b). Implementing the capabilities of the GMM-DO

filter and smoother within the MSEAS DO-PE probabilistic modeling system will allow

improved reanalysis for various scientific and societal applications.

Further Stochastic Dynamical Studies: Our new DO primitive-equations and schemes

can be applied in the future to study processes in multiple regional oceans. Some examples

of dynamical studies are probabilistic analysis of the: cold dome (Gawarkiewicz et al.,

2011), effects of climate change and uncertain atmospheric fluxes (Lermusiaux et al., 2006),

multiscale processes in the Arabian Sea and Bay of Bengal such as high-salinity events

(Wang et al., 2013), Rossby waves (e.g. Brandt et al., 2002; Vic et al., 2014), monsoon-

driven currents (Shankar et al., 2002), slow overturning circulations (e.g. Schott et al., 2002),

western boundary currents in the Bay of Bengal (Gangopadhyay et al., 2013), inter-annual
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and climate connections (e.g. Schott et al., 2009), and strong marine ecosystem effects (e.g.

Marra and Barber, 2005).

Modeling for Sustainable Fisheries Management in India: Sustainable fisheries

management is a critical requirement in all countries and especially in developing economies

such as India (World Bank, 2010; United Nations, 2015). As emphasized by the UN Sus-

tainable Development Goal, practical and sustainable fisheries and coastal management is

an immediate need for India (United Nations, 2015). The probabilistic PDE-based regional

ocean prediction system will serve as the foundation of a physics-based, data-driven tech-

nical decision aide for a sustainable rights-based fisheries managament system in India. In

the future, real-time data collected will be assimilated into the probabilistic predictions by

our GMM-DO filter and smoother. Furthermore, our physical-biogeochemical uncertainty

products (Punt and Hilborn, 1997; Robinson et al., 2002; Lermusiaux et al., 2002; Hilborn,

2012; Mills et al., 2013) will be used along with data-driven ecosystem models (e.g., Brandt,

1993; Palomares and Pauly, 1998; Nammalwar et al., 2013; Sugihara et al., 2012) to forecast

species specific fish concentrations, specifically Bhetki, Pomphret, Hilsa, and Mackarel in

the Bay of Bengal.

Risk-Optimal Path Planning with Realistic Probabilistic Regional Ocean Pre-

dictions: In Chapter 4 of the present thesis, we demonstrated the application of stochastic

DO level set optimization for energy optimal planning in realistic coastal ocean simulations.

In Chapter 5 and 6, we have demonstrated the stochastic DO level set equations for stochas-

tic time-optimal planning in idealized flow scenarios. The next step is to apply the software

developed in Chapter 5 and 6 to plan risk-optimal paths in the realistic stochastic ocean

simulations of Chapter 3 or of other regions Lermusiaux et al. (2017b).

Real-Time Demonstration of Energy-Optimal and Risk-Optimal paths: In (Sub-

ramani et al., 2017b), we demonstrated our deterministic time-optimal path planning with

REMUS 600 AUVs. The next step in this research is to demonstrate in real-time with real

vehicles, the energy-optimal and risk-optimal paths computed by the theory, schemes and

software developed in the present thesis.
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On-board Routing: With predictions of the probability distribution of exact time-optimal

paths, we have all the ingredients necessary to complete on board routing (Lermusiaux et al.,

2016, 2017c). As vehicle collects data, the beliefs about environmental flows and time-

optimal paths can be updated and risk-optimal paths can be re-planned during a mission

either on-board the vehicle or remotely using cloud computing and communicated to the

vehicles.
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Appendix A

Ocean Primitive Equations

A.1 Deterministic free-surface primitive equations

A.1.1 Continuous equations

Primitive-equations describe the hydrostatic and boussinesq physics in a stratified, rotating

and thin ocean (e.g., Cushman-Roisin and Beckers, 2011). Following Haley and Lermusiaux

(2010), the PEs with free-surface are

Cons. Mass

Cons. Horiz. Mom.

Cons. Vert. Mom.

Cons. Heat

Cons. Salt

Eq. of State

Free Surface

Ow
az
Bu 1+ fk x u = -V. ([u w]U) - -Vp + Fu

at PO
ap
az P
aT -V-([uwT)+F ,at
as -- V-([uw]S)+Fs

p = p(z, T, S)

=~ -V - Hu dz ,at (fdH

where u is the horizontal velocity vector, w is the vertical velocity, p is the pressure, f

is the Coriolis parameter, p is the density, po is the (constant) density from a reference

state, g is the acceleration due to gravity, and k is the unit direction vector in the vertical

direction. The gradient operators, V, in Eqs. A.1 and A.2 are 2D (horizontal) operators.

The turbulent sub-gridscale processes are represented by Fu, FT, and FS.
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A.1.2 Discrete equations

Here we provide the discrete equations for eqs. A.1-A.7 derived in Haley and Lermusiaux

(2010). A terrain following --coordinate system, second order finite volumes and second

order leap-frog time-discretization are employed. Let us denote a discrete finite volume as

AV, its lateral and Top/Bottom surfaces as Slat and STB, discrete time-steps as n + 1, n

and n - 1, and leap-frog operators as J(O) = 0n+1 _ On-1, 5(4) _ n+1 _ 0-1. The discrete

PEs are

J u-dA+ Jw- dA=0 , (A.8)
s JsTB

A)+ fI x 6 (uAV) =n '-l - g (AVVrl)a - f c x (uAV)' , (A.9)
T

n+1 AVMSL K n+1
(U'AV) = (uAV) - H Z AVMSL dzMSL (A.10)

k=1

= 

(TAV) = FTnAVn -F(T") , (A.11)

T

(SAV) =FSnAV n _ (Sn) , (A.12)
T

8U + afTk x SU T {F"'n - gVr} , (A.13)

a6gTV - [(H + 7 ) V67] -V (u'" ) - =
77T

V [(H + r") (f + U" + (1 - )Un-') , (A.14)

Un+1 . +l - aTgVn + u 6,r (A.15)
H +

where

P(U)
F (u)= ;(v) ()J In u-dA+ w-dA

f'nn-l = n Ph2-dA - --(u)"+FAV+F +- ,

]7n"1 = JPshdA- (u)"+FAV" dz
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n-1

+ {3 F"n-1,Ay-1} dz
Hi j + J,-Hj,j

,n 1 =Fnn-l - f k x U ,

w is the vertical velocity through the top and bottom of computational cells.
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Appendix B

Definitions and Notation for

Dynamically Orthogonal Primitive

Equations

B.1 Definitions and Notation

To supplement the main text, in this appendix, we summarize the mathematical language,

notations, certain important definitions and conventions employed in the present work. All

relevant notations are also furnished in Table B.1.

Statistical Expectation. For a random field T(x, t; w), we define the statistical mean

T(x, t) and expectation E operator as

T(x, t) = E[T(x, t; w)] = T(x, t; w) d'P. (B.1)

Spatial Inner Product. For any and every two fields u(x, t; w) and v(x, t; w), the spatial

inner product over a physical domain D is defined as,

(U (x, t; W), V (x, t; W)) = U (X, t; CJ)T A -' v(x, t; w) dx , (B3.2)

where A- is a weighing matrix. The spatial inner product is equivalently called the pro-

jection of a on v. When u = v, the definition eq. B.2 is the norm of u.
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Orthogonal Component Operator. For any random field G(x), the orthogonal compo-

nent operator quantifies the part that is not described by the subspace spanned by {i}*.

It is defined as,
fls,,p

FLG(x) = G(x) - ( KG(x), k) 'k. (B.3)
k=1

DO Mean, Modes and Coefficients. In the Dynamically Orthogonal (DO) methodol-

ogy, we decompose the stochastic state vector into its statistical mean (called the DO mean,

4b(x, t)), a set of dynamically orthonormal fields (called the DO modes, {J~i(x, t; w)}' 1 )

spanning a linear stochastic subspace of dimension n,,p, and projections of the stochastic

state vector onto this subspace (called the DO coefficients, 4(t; w)) through a dynamic

Karhunen-Loeve decomposition,

?/(x, t; w) = V(x, t) + #i(t; w)4i (x, t). (B.4)

Subscript indices (e.g., i = 1,- ,, ) are used to number the DO modes and coefficients.

Here, the Eintein notation convention is used to indicate summation, i.e.,

ns,?

0Aj 0A -ij (B.5)
i=1

The DO coefficients have zero mean, i.e.,

E[#i] = 0 . (B.6)

We define the second moment and third moment of the DO coefficients as

C0, E [0i#0j] , (B.7)

Moiojo E[#i~x] .(B.8)

B.2 Generic Dynamically Orthogonal Equations

The Dynamically Orthogonal field equations (Sapsis and Lermusiaux, 2009, 2012; Ueck-

ermann et al., 2013) can be briefly introduced as follows. Consider a general stochastic
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Table B.1: Notation specific to Dynamically Orthogonal Ocean Primitive Equations
Notation Description

4' Stochastic PE state vector

[u w] Velocity
T Temperature
S Salinity

r7 Free-surface
Ph Hydrostatic pressure due to the undisturbed mean sea level

Ps Hydrostatic pressure due to the free surface

p Total hydrostatic pressure p = Ph + Ps

p Density
f Coriolis frequency

g Acceleration due to gravity
x [x, y, z] 3-d spatial variables

t Temporal variable
H Local bathymetry

nsp Dimension of the DO subspace for 4
nro Number of stochastic realizations sampled from the joint distribution of the

uncertainty in the DO subspace for 0
DO mean of the stochastic state vector 4
DO mode i = 1, - - -ni of the stochastic state vector 4
DO coefficient corresponding to mode i = 1, - nsV

n Discrete time step
Discrete value of 4 at time step n

T Twice the time step At
64 Leap frog operator V 'n+1 - on-1
^'n+1 Predictor value of 4 at time step n + 1
J0 Predictor leap frog operator on+1 _ on-1

239



continuous field 4'(x, t; w), described by a S-PDE,

04'(x, t; W) L [ (x,t;w),x,t;w] (B.9)
at

where L is a general nonlinear operator. Let us apply a generalized dynamic Karhunen-

Loeve (KL) decomposition (a DO decomposition)

S,/)

'(x, t; w) = '(x, t) + #i (t; w)'(x, t) (B.10)
i=O

and an orthogonality condition on the evolution of the stochastic subspace

at I /= 0 V i,j, (B.11)

to obtain the DO equations for the DO mean T, coefficients Oi and modes i as

ab (x, t)
=t E[L]; (B. 12)at

at
S t) =ZC I I2E[#jE], (B.14)

j=1

Here, the original SPDE B.9 is recast into the DO equations consisting of a mean PDE

B.12, the mode PDEs B.14, and the stochastic coefficient ODEs B.13. The n,,p modes 4i are

dynamic: they form an evolving subspace. The n,p stochastic coefficient #i are also variable:

they evolve the uncertainty within that dynamic subspace. For physical nonlinear systems,

the intrinsic nonlinearities in eq. B.9 and the corresponding dynamic aspects retained in

eqns. B.12--B.14 often enable the truncation to a number of nmV modes and coefficients

typically much smaller than the dimensions (spatial and stochastic) of the original system.

It is this dynamics, and the adaptable size n,, (Lermusiaux, 1999b; Sapsis and Lermusiaux,

2012), that allows shadowing most of the stochasticity of the original variables.
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B.3 Stepwise Derivation of the DO equations for a Generic

S-PDE with Linear and Quadratic Terms

Approach. In deriving the Dynamically Orthogonal Primitive Equations (DO-PEs), we

adopt the following strategy. We will classify the terms in the PEs to polynomial-like

(e.g., advection) and non-polynomial-like (e.g., absolute values) terms. All non-polynomial

terms will be polynomialized utilizing Taylor expansions. Thereafter, we will deal only

with polynomial terms. These will be classified into linear, quadratic and progressively

higher order polynomial terms based on the number of stochastic variables present in each

term. For example, the terms that contain only one stochastic variable such as stochastic

coriolis acceleration is called linear, and those terms with two stochastic variables such as

advection of stochastic tracer by a stochastic velocity is called quadratic. Note that a linear

term might still contain nonlinear components (e.g., advection of stochastic tracer by a

deterministic velocity), and we emphazise that the distinction is only based on the number

of stochastic variables. Such a distinction helps to quickly derive the DO equations and

understand the implementation decisions needed to build a DO computational system from

an existing deterministic computational system. Even though we will show derivations and

implementation for the ocean PEs and specific options and choices in the MSEAS modeling

system, our hope is that the lessons drawn and presented here are universal. We will strive

to provide strategies for easy extensions to other modeling systems such as MSEAS HDG,

ROMS, WRF with minimal design and coding effort.

In the present PEs we consider only linear and quadratic terms, and we will only sketch

a strategy of how to handle progressively higher order polynomial terms.

Generic linear and quadratic operators. Let us define a generic linear spatial operator

A(01) acting on one stochastic state vector 01 with the following properties

A(V) + 0 2 ) = A(01) + B(02 ), (B.15)

A(a@1) = aA(01) , (B. 16)

where a is a scalar.

Let us define a general quadratic bilinear spatial operator acting on two state vectors
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b1(x, t), b2(x, t) as A(i, '02), with the following properties

B(/ 1, 4 2) B( 2, ') , (B.17)

B (01 + b2, 03) = B (01, b3) + A (02, 63) ,(B. 18)

B(01, 0 2 + 3) = B(bip, 0 2 ) + A(01i, 3), (B.19)

B(ai, 02 ) = B(01, a02 ) = aB(V1, 2), (B.20)

where a is a scalar.

Classification of terms In the PEs, the linear terms are: coriolis, vertical mixing, gradi-

ent of hydrostatic pressure, gradient of free-surface, and the quadratic terms are: advection,

gradient of transport in the free-surface equation. As defined in Sec. B.1, we use A to rep-

resent linear operators and B for quadratic operators. Note that the gradient of hydrostatic

pressure is only linear since we use a locally first order Taylor expansion of the density

around the DO mean fields of temperature and salinity.

B.3.1 Generic Dynamically Orthogonal Equations

The polynomialized PEs with only linear and quadratic terms may be written as a generic

stochastic dynamical system in the Langevin form as

&0(x, t; W)
= A(0(x, t; w), 0 (x, t; w)) + B('(x, t; w)) , (B.21)

(x, 0; W) = Vo(x; W) , (xsv, t)I = 06SD (t; W). (B.22)

Now, we will derive the DO equations for the above dynamical system, and then write the

DO-PEs by simple observation and substitution.

Let us introduce the dynamic Karhunen-Loeve expansion (the DO expansion)

O(x, t; W) = O(x, t) + q5i(t; w)O(x, t). (B.23)

As mentioned before, for brevity of notation, we will drop the parenthesis hereafter.
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Substituting eq. B.23 in eq. B.21 and using the properties of A and B, we get

t = A (b + 4 i) + B (O + Oi'bi, + q5>jj), (B .24)

a7J ati dq3i
at+ + dt=A(O)+OA(o)

+ B(, V) + 4OB(<i/, -) + 4jB (, j) + 0i4jB (i, j) . (B.25)

After expanding, each term in eq. B.21 with n, stochastic variables become 2n. DO terms.

For example, linear term in eq. B.21 became two DO terms and the quadratic term became

four DO terms. Similarly a cubic term would become eight DO terms, so on and so forth.

Applying the expectation operator on eq. B.25, we obtain the DO mean equation,

=A () + B(b, b) + Co..B(OM 7n) , (B.26)

Subtracting eq. B.26 from eq. B.25, we get the DO perturbation equations

Oa + d=4A(i) + iB(4i, b) + jB( , g)+ (O4, - C4,)B(4i, i/j). (B.27)

Re-writing the repeated indices on the RHS and grouping like terms, we have,

Oia + dtb Omr (A ( bm) + B (ObM 1 ) B (V5,m)) + (0~m On - rnO)B(mO)

(B.28)

To obtain an explicit governing equation for the DO coefficients, we project the perturba-

tion S-PDE B.28 on to the subspace spanned by the DO modes {k}~I and apply the

dynamically orthogonal conditions eq. 2.30 and eq. 2.42, i.e.,

Oi , + i 'ki K(A Q m) + Bibm?) + B (P,k))k?(.9

+(Omon - COm.n) (B( , n), k, (B.29)

= (A(Jm) + B ( m, V) + B(+, Vm)), + (OMqOn - C4m On) B( m, 'n),' <
+ f 0 (?fmA- 1?i) u6- - dD. (B.30)

To obtain an explicit governing equation for the DO modes, we multiply the perturbation
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S-PDE B.28 by the DO coefficients and apply the expectation operator, i.e.,

ki i - i k Om (Ad( m)+ B ,+ B ,
dat+

+($4 mn -- kC- m )B( ) . (B.31)

C4k i & + 'tbC, d-0 C4k 0- (A (m) + B m,b) + BQbm)) + M . . B ,n)

(B.32)

= A(0j) + B(Vbi,') + B O) + C B(, n) - C C . (B.33)at + ~'iMkkdtk LL

The last term in eq. B.33 is evaluated by using eq. B.30 as

C '= C40 .k K (A (m) + B ) + B ( m)),i + (M-0 ?n) (B( mn), i

+-COOm ("mA-'i) uD - d5DV,

(B.34)

C- Ck =dt K(Ai )+ B(b) + B j)), 1) + (Ck- M ) l n B n),

+ (?$A-1) 1 - d6D.
2 j"' D

(B.35)

Thus the mode equations are

A(b) + B(Vbi, ;) + B 'b) + CM4li k mB(0. n,

- (A ( I) + BQ~~'b + B QQ, ?/j) + C~klo M~k om~n 0,, m B ib) ~)?

- ( A-1/1) u36D d 5D. (B.36)
2 Jvo

B.4 Discretization of the Generic Linear DO Equations

Let us denote the discrete time step n as tn = nAt. Superscript n will be used to indicate

that a particular term has been evaluated at discrete time t". The operators A and B are

spatial operators than can be discretized to A and B by a finite difference, finite volume

or finite element approach. Let us also define r = 2At, 6'b = 0n+1 - vgn-1, and V)' =

an+ + (1 - 2a),'n + a4"- 1 . Utilizing a semi-implicit leap frog temporal discretization and
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a conservative second order central difference finite volume spatial discretization, the linear

DO equation with only A can be discretized as

= A(b) +Q(7 2 ). (B.37)

For a = 0, the update equation for computing 0n+1 is

on+1 =n- + TA(o") + O(r3). (B.38)

Schemes for discretizing DO field equations. We present schemes for the DO eqns. B.26,

B.35, B.36

+ rA(7) + O(T 3 ), (B.39)

# +1 = o-1 + Ton ((n), ns) + 0(T3), B.0

T-1 + [A( /) - ( ), O(T), (B.41)

Discrete equation for a DO realization. Multiplying eq. B.40 and eq. B.41 for each i

and summing over the subspace, we obtain

n-11n+ n ~1c7) -1 ~ A~ /)qfln q + on A )7L n

+T2 [n A(n n) A ) - ( A( ), (n) (A(V), /q9) " q] + O(T3) (B.42)

The O(r) term has quanities at two time steps, and there is a O(T 2 ) term present. We would

like to evaluate if the O(T 2 ) term vanishes. From a Taylor expansion of the coefficient and

modes at time-step n - 1 around those at time-step n, we have

- - 4 A ) g)jl + O(T2) (B.43)

- A - ),q +O(T2). (B.44)

Hence, substituting the above in eq. B.42, we get

n+l +1 = -in-i + T - To A(<n'), n)) A()
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To (qn)i - ~,n)) nA), /)(AqflA(k

2 [A( ,n) - ((n' n) n

+T2 [onA K( n) n _ A( /4) - on A(n) n) KA (n) 'n)qnj + O(T3), (B.45)

_ 1 ( 1 ) A ( )

-on (n)' 'qn )0"+ 7on (A("), "(A) (An), qf) 5"

- 4 (A(), 'n) A(07) + 'on (A(), L"n) (A(/4), 4qn) ?)]

+T2 [o (A(I)' n") A( ) - o (A( ), n") (A(), Yq) qnJ + O(T3)

(B.46)

on+1i+1 = on- - + o AT(i) - on ( A( )," n3(A) A( jn)

+ n2 (A (n), n ) A(?j)_ on (A( ), ni") KA(n)4, q n") q] O(+T)

(B.47)

(B.48)n+1 + 1 nl~ln-l + ToA(/n4) + O(T3)

For any a, the update equation corresponding to eq. B.37 is

on+1 =n-1 + aTA( on+1 ) + (1 - 2a)TA(,b) + aTA(O"- 1 ) + O(T 3 ). (B.49)

Thus for linear DO equations, the deterministic discrete schemes and the DO schemes

are consistent.

246

on+1 . = -li-i + T [ A()

+o7 KA (k ), bn) n

+on ( n)' n ) ( in1 (A 1



Appendix C

Dynamically Orthogonal Level Set

Equations

C.1 Stochastic Dynamically Orthogonal level-set optimization

for energy-optimal path planning

In this appendix, we first list the acronyms and notation employed in Table 5.1. We then

provide the stochastic DO level-set equations (box 2b in Fig. 4-2). Finally, we describe

the algorithm for the stochastic DO level-set optimization including the switch-sampling

procedure and computational costs. Details are in (Subramani and Lermusiaux, 2016).

C.1.1 Stochastic DO level-set equations

To solve the S-PDE eq. 4.3 we employ a dynamic stochastic model-order reduction, the

Dynamically Orthogonal decomposition. The DO method achieves model-order reduction

by exploiting the nonlinearities of the flow v(x, t), which tend to concentrate the responses

of the scalar level-set field (#) into specific dynamic patterns. The reduced DO level-set

equations are computationally less expensive to solve. Next, we outline the derivation of the

DO level-set equations, as a summary of Subramani and Lermusiaux (2016).

To derive the DO level-set equations, we first introduce a generalized dynamic Karhunen-

Loeve decomposition (i.e., a DO decomposition) of the level-set field (#(x, t; w)) and the

stochastic vehicle speed (F(t; w)),
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0(x, t; W) = (x, t) + Y Yi(t; W) i(x, t) (C.1a)
i=O

ns,F

F(t;w) = F(t) + 1 zi(t; w)ji(t) (C.1b)
i=O

into the stochastic level-set equation eq. 4.3 to obtain the DO-expanded equation

'9 (x t) +., E ~;oe , t)) =

i='

- ((t) + zi (t; w)Fi(t) V (xt) + Yi(t; w) i(x, t) . (C.2)
i=0 i=O

-v(x,t) - ((x, t) + E Yi(t; w)4i(x, t)

Here, (x, t) is the mean, i(x,t)s are the spatial-modes, and Y(t; w)s are the stochastic

coefficients of the scalar level-set field 4(x, t;w). Similarly, F(t) is the mean, Fi(t) is the

spatial-mode, and zi(t; w) is the stochastic coefficient of the vehicle-speed F(t; w). By def-

inition, the stochastic coefficients are zero-mean stochastic processes. Next, we apply the

expectation operator on the eq. C.2 to obtain the mean PDE, we multiply the eq. C.2 with

the coefficients and apply the expectation operator to obtain the mode PDEs, and we project

the eq. C.2 on the modes to obtain the coefficient ODEs. The equations thus obtained-the

stochastic DO level-set equations-are as follows.

= -(FE[-] + E[zy]) - v - 1V (C.3)

dt = -(F(y - IE[y]) + F(zy - E[z7]) + YkV -Vek, Oi) (C.4)

Z= -C- (FE[Yy] + FE[zYyJ) + v - Voiat7
-(-C-6 (PE[Yg y] + FE[zYy]) + v- V - , q7q5l , (C.5)

where we have dropped the parenthesis denoting spatial, temporal and stochastic indices for

ease of notation. Also, y -- V41, E is the expectation operator and the spatial inner-product

over a domain Q for any two fields u(x, t) and v(x, t) in Q is defined as

(u(x, t), v(x, t)) = j u(x, t)Tv(x, t)dx. (C.6)
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A key step in deriving the DO equations is handing the non-polynomial nonlinearity y.

The above equations eq. C.1.1 do not assume a DO decomposition for this -y norm. Other

equivalent DO equations which consider an explicit DO decomposition for -y have also been

derived in Subramani and Lermusiaux (2016), but not utilized in the present paper.

C.1.2 Algorithm and Computational Cost

The algorithm is listed in Table 4.1. It consists of three core successive steps, the computa-

tion of the velocity field from an ocean modeling system; stochastic simulation for a given

function space of vehicle speeds; and optimization for energy-optimal paths. The second

and third core steps can be iterated if the function space of vehicle speeds is re-sampled or

improved by (machine) learning. For the stochastic simulation, the stochastic class F(t; w)

is represented as realizations FDO(t;r), where r = 1...rnr is the realization index and the

subscript denotes that it is a DO decomposition. The stochastic simulation steps compute

the energy distribution E(r) = f[(xf;FDO(-;r)) p(t; r)dt for all realizations. To find energy-

optimal vehicle-speeds, we perform the optimization F 0 (t) = argminFDO(.;r) E(r). The

result is energy-optimal paths among all time-optimal paths for vehicles navigating in the

coastal ocean.

Switch-sampling procedure To obtain realizations F(t; r), the stochastic class F(t; w)

is sampled by switch-sampling (Subramani and Lermusiaux, 2016), a structured approach

to sample the large combinatorial space of discretized vehicle-speed time-series. For 1 levels

of discretized speed and nsi8 ,F discrete times, the total size of this combinatorial space is

lnsw,F. In switch-sampling, we use a coarser resolution in both discrete speeds and switching

times than in direct sampling, but a randomization is employed within this coarser resolution

that aims to remedy for this. We are aided by the fact that the structured and relatively

strong environmental flows are such that ranges of speeds lead to very similar behavior:

these ranges do not need to be sampled with refined grids, the transitions due to flow

forcing is what needs to be captured. Since a structured approach is taken to sample the

large combinatorial space, with enough samples, the method can adaptively find the energy

optimal speed time-series and thus paths.
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Computational Cost The computational cost of the direct Monte Carlo simulation is n,

times the cost of one deterministic solution of the level-set PDE eq. 4.1b. The DO method

solves a mean PDE and nT,4 mode PDEs and n, coefficient ODEs. The mean and mode

PDEs are similar to the level-set PDE and the coefficient ODEs are cheaper than the PDE-

solve. Hence, the net cost is of the order of (1 + n,) solutions of the level-set PDE. Since

in our applications (1 + ns,4) < nr, the DO method is three- to four-orders of magnitude

cheaper than MC.

The cost of one deterministic solution is O(n.ny) and the cost of one DO solution is

O((1 + %,4)n.ny). The cost of integrating the primitive equations by the MSEAS modelling

system is O(4nnynz). In the present case n, = 175, ny = 150, n,, = 100, n,,4 = 120. For

the current implementation, the CPU time requirement in a single CPU with 4 cores for

integrating the PE for 1 day with 2-way nesting is -1.5h and the DO level-set equations is

also -1.5h. Further implementation improvements can be achieved, for example, by using

narrow band approaches, parallel computing, and/or by reducing the level-set computation

to a smaller domain estimated by the maximum distance a glider may travel for the planning

horizon.
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Appendix D

Dynamically Orthogonal

Quasi-Geostrophic Equations

In this appendix, we provide the Dynamically Orthogonal barotropic Quasi-Geostrophic

equations that we utilized to generate stochastic flow fields. Detailed description of similar

equations for Boussinesq dynamics, their derivation and numerical schemes are provided in

Ueckermann et al. (2013) and the implementation is provided in Ueckermann and Lermusi-

aux (2012). The equations for the DO mean (eqs. D.la,D.1b), coefficients (eq. D.1c), and

modes (eqs. D.1d,D.1e) of the S-PDE eq 5.7 are

V -V = 0 , (D. 1a)

&V 12at= Re - () mf V -(imn)-ffxi-V + ar, (D.1b)

= AM V22 - V V (Vi.Tim) - Vpm - f k X , V,dt - (t Re -V mV Vm

- (PmPn - Cyimlin) (V- (imin),is) , (D.1c)

V - = 0, (D.1d)

= Qv. - (Qv, ik) ik, (D.Ie)at (~e

where Qvi = V2 i - V - (iav) - V - (Vii) - VM - MIJ!min V. (imn),

where we have dropped the parenthesis (x, t; w) for brevity of notation.
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