81 research outputs found

    Azimuthal correlations of pions in relativistic heavy ion collisions at 1 GeV/nucl.

    Get PDF
    Triple differential cross sections of pions in heavy ion collisions at 1 GeV/nucl. are studied with the IQMD model. After discussing general properties of Δ\Delta resonance and pion production we focus on azimuthal correlations: At projectile- and target-rapidities we observe an anticorrelation in the in-plane transverse momentum between pions and protons. At c.m.-rapidity, however, we find that high ptp_t pions are being preferentially emitted perpendicular to the event-plane. We investigate the causes of those correlations and their sensitivity on the density and momentum dependence of the real and imaginary part of the nucleon and pion optical potential.Comment: 40 pages, 18 eps-figures, uses psfig.sty; complete postscript file available at ftp://th.physik.uni-frankfurt.de/pub/bass/GSI-preprint_95-7.ps.

    Azimuthal correlations of pions in relativistic heavy ion collisions at 1 GeV/nucl.

    Get PDF
    Triple differential cross sections of pions in heavy ion collisions at 1 GeV/nucl. are studied with the IQMD model. After discussing general properties of resonance and pion production we focus on azimuthal correlations: At projectile- and target-rapidities we observe an anticorrelation in the in-plane transverse momentum between pions and protons. At c.m.-rapidity, however, we find that high pt pions are being preferentially emitted perpendicular to the event-plane. We investigate the causes of those correlations and their sensitivity on the density and momentum dependence of the real and imaginary part of the nucleon and pion optical potential

    Physics of high-energy heavy-ion collisions

    Get PDF
    This a review of the present status of heavy-ion collisions at intermediate energies. The main goal of heavy-ion physics in this energy regime is to shed some light on the nuclear equation of state (EOS), hence we present the basic concept of the EOS in nuclear matter as well as of nuclear shock waves which provide the key mechanism for the compression of nuclear matter. The main part of this article is devoted to the models currently used for describing heavy-ion reactions theoretically and to the observables useful for extracting information about the EOS from experiments. A detailed discussion of the flow effects with a broad comparison with the avaible data is presented. The many-body aspects of such reactions are investigated via the multifragmentation break up of excited nuclear systems and a comparison of model calculations with the most recent multifragmentation experiments is presented

    Three-body collisions in Boltzmann-Uehling-Uhlenbeck theory

    Full text link
    Aiming at a microscopic description of heavy ion collisions in the beam energy region of about 10 A GeV, we extend the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model by including a relativistic mean field, in-medium baryon-baryon cross sections and three-body collisions. The model is then compared with experimental data for central Au+Au collisions at 2-10 A GeV and central Pb+Pb collisions at 30 and 40 A GeV on the proton rapidity spectra, the midrapidity yields of π+\pi^+, K±K^\pm and (Λ+Σ0)(\Lambda+\Sigma^0), and the transverse mass spectra of π±\pi^\pm and K±K^\pm. The three-body collisions increase the inverse slope parameters of the hadron mm_\perp-spectra to a good agreement with the data.Comment: 26 pages, 9 figures, figures added, discussion extended, results not changed, version accepted in Phys. Rev.

    Microscopic Models for Ultrarelativistic Heavy Ion Collisions

    Get PDF
    In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from Elab200E_{lab} 200 GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.Comment: 129 pages, pagestyle changed using US letter (8.5x11 in) format. The whole paper (13 Mb ps file) could also be obtained from ftp://ftp.th.physik.uni-frankfurt.de/pub/urqmd/ppnp2.ps.g

    Minimum of η/s\eta/s and the phase transition of the Linear Sigma Model in the large-N limit

    Get PDF
    We reexamine the possibility of employing the viscosity over entropy density ratio as a diagnostic tool to identify a phase transition in hadron physics to the strongly coupled quark-gluon plasma and other circumstances where direct measurement of the order parameter or the free energy may be difficult. It has been conjectured that the minimum of eta/s does indeed occur at the phase transition. We now make a careful assessment in a controled theoretical framework, the Linear Sigma Model at large-N, and indeed find that the minimum of eta/s occurs near the second order phase transition of the model due to the rapid variation of the order parameter (here the sigma vacuum expectation value) at a temperature slightly smaller than the critical one.Comment: 22 pages, 19 figures, v2, some references and several figures added, typos corrected and certain arguments clarified, revised for PR
    corecore