5 research outputs found

    High-order numerical algorithm for fractional-order nonlinear diffusion equations with a time delay effect

    Get PDF
    In this paper, we examine and provide numerical solutions to the nonlinear fractional order time-space diffusion equations with the influence of temporal delay. An effective high-order numerical scheme that mixes the so-called Alikhanov L2 − 1σ formula side by side to the power of the Galerkin method is presented. Specifically, the time-fractional component is estimated using the uniform L2−1σ difference formula, while the spatial fractional operator is approximated using the Legendre-Galerkin spectral approximation. In addition, Taylor’s approximations are used to discretize the term of the nonlinear source function. It has been shown theoretically that the suggested scheme’s numerical solution is unconditionally stable, with a second-order time-convergence and a space-convergent order of exponential rate. Furthermore, a suitable discrete fractional Grönwall inequality is then utilized to quantify error estimates for the derived solution. Finally, we provide a numerical test that closely matches the theoretical investigation to assess the efficacy of the suggested method. © 2023 the Author(s), licensee AIMS Press.Russian Science Foundation, RSF: 22-21-00075The authors are grateful to the handling editor and the anonymous referees for their constructive feedback and helpful suggestions, which highly improved the paper. V.G. Pimenov wishes to acknowledge the support of the RSF grant, project 22-21-00075

    Variable-Order Fractional Partial Differential Equations: Analysis, Approximation and Inverse Problem

    Get PDF
    Variable-order fractional partial differential equations provide a competitive means in modeling challenging phenomena such as the anomalous diffusion and the memory effects and thus attract widely attentions. However, variable-order fractional models exhibit salient features compared with their constant-order counterparts and introduce mathematical and numerical difficulties that are not common in the context of integer-order and constant-order fractional partial differential equations. This dissertation intends to carry out a comprehensive investigation on the mathematical analysis and numerical approximations to variable-order fractional derivative problems, including variable-order time-fractional, space-fractional, and space-time fractional partial differential equations, as well as the corresponding inverse problems. Novel techniques are developed to accommodate the impact of the variable fractional order and the proposed mathematical and numerical methods provide potential tools to analyze and compute the variable-order fractional problems
    corecore