28,039 research outputs found

    Predictive maintenance for the heated hold-up tank

    Full text link
    We present a numerical method to compute an optimal maintenance date for the test case of the heated hold-up tank. The system consists of a tank containing a fluid whose level is controlled by three components: two inlet pumps and one outlet valve. A thermal power source heats up the fluid. The failure rates of the components depends on the temperature, the position of the three components monitors the liquid level in the tank and the liquid level determines the temperature. Therefore, this system can be modeled by a hybrid process where the discrete (components) and continuous (level, temperature) parts interact in a closed loop. We model the system by a piecewise deterministic Markov process, propose and implement a numerical method to compute the optimal maintenance date to repair the components before the total failure of the system.Comment: arXiv admin note: text overlap with arXiv:1101.174

    Adaptive control in rollforward recovery for extreme scale multigrid

    Full text link
    With the increasing number of compute components, failures in future exa-scale computer systems are expected to become more frequent. This motivates the study of novel resilience techniques. Here, we extend a recently proposed algorithm-based recovery method for multigrid iterations by introducing an adaptive control. After a fault, the healthy part of the system continues the iterative solution process, while the solution in the faulty domain is re-constructed by an asynchronous on-line recovery. The computations in both the faulty and healthy subdomains must be coordinated in a sensitive way, in particular, both under and over-solving must be avoided. Both of these waste computational resources and will therefore increase the overall time-to-solution. To control the local recovery and guarantee an optimal re-coupling, we introduce a stopping criterion based on a mathematical error estimator. It involves hierarchical weighted sums of residuals within the context of uniformly refined meshes and is well-suited in the context of parallel high-performance computing. The re-coupling process is steered by local contributions of the error estimator. We propose and compare two criteria which differ in their weights. Failure scenarios when solving up to 6.910116.9\cdot10^{11} unknowns on more than 245\,766 parallel processes will be reported on a state-of-the-art peta-scale supercomputer demonstrating the robustness of the method

    Different Approaches on Stochastic Reachability as an Optimal Stopping Problem

    Get PDF
    Reachability analysis is the core of model checking of time systems. For stochastic hybrid systems, this safety verification method is very little supported mainly because of complexity and difficulty of the associated mathematical problems. In this paper, we develop two main directions of studying stochastic reachability as an optimal stopping problem. The first approach studies the hypotheses for the dynamic programming corresponding with the optimal stopping problem for stochastic hybrid systems. In the second approach, we investigate the reachability problem considering approximations of stochastic hybrid systems. The main difficulty arises when we have to prove the convergence of the value functions of the approximating processes to the value function of the initial process. An original proof is provided

    The Stochastic Reach-Avoid Problem and Set Characterization for Diffusions

    Full text link
    In this article we approach a class of stochastic reachability problems with state constraints from an optimal control perspective. Preceding approaches to solving these reachability problems are either confined to the deterministic setting or address almost-sure stochastic requirements. In contrast, we propose a methodology to tackle problems with less stringent requirements than almost sure. To this end, we first establish a connection between two distinct stochastic reach-avoid problems and three classes of stochastic optimal control problems involving discontinuous payoff functions. Subsequently, we focus on solutions of one of the classes of stochastic optimal control problems---the exit-time problem, which solves both the two reach-avoid problems mentioned above. We then derive a weak version of a dynamic programming principle (DPP) for the corresponding value function; in this direction our contribution compared to the existing literature is to develop techniques that admit discontinuous payoff functions. Moreover, based on our DPP, we provide an alternative characterization of the value function as a solution of a partial differential equation in the sense of discontinuous viscosity solutions, along with boundary conditions both in Dirichlet and viscosity senses. Theoretical justifications are also discussed to pave the way for deployment of off-the-shelf PDE solvers for numerical computations. Finally, we validate the performance of the proposed framework on the stochastic Zermelo navigation problem

    Numerical method for impulse control of Piecewise Deterministic Markov Processes

    Full text link
    This paper presents a numerical method to calculate the value function for a general discounted impulse control problem for piecewise deterministic Markov processes. Our approach is based on a quantization technique for the underlying Markov chain defined by the post jump location and inter-arrival time. Convergence results are obtained and more importantly we are able to give a convergence rate of the algorithm. The paper is illustrated by a numerical example.Comment: This work was supported by ARPEGE program of the French National Agency of Research (ANR), project "FAUTOCOES", number ANR-09-SEGI-00
    corecore