864 research outputs found

    Perturbed Three Vortex Dynamics

    Full text link
    It is well known that the dynamics of three point vortices moving in an ideal fluid in the plane can be expressed in Hamiltonian form, where the resulting equations of motion are completely integrable in the sense of Liouville and Arnold. The focus of this investigation is on the persistence of regular behavior (especially periodic motion) associated to completely integrable systems for certain (admissible) kinds of Hamiltonian perturbations of the three vortex system in a plane. After a brief survey of the dynamics of the integrable planar three vortex system, it is shown that the admissible class of perturbed systems is broad enough to include three vortices in a half-plane, three coaxial slender vortex rings in three-space, and `restricted' four vortex dynamics in a plane. Included are two basic categories of results for admissible perturbations: (i) general theorems for the persistence of invariant tori and periodic orbits using Kolmogorov-Arnold-Moser and Poincare-Birkhoff type arguments; and (ii) more specific and quantitative conclusions of a classical perturbation theory nature guaranteeing the existence of periodic orbits of the perturbed system close to cycles of the unperturbed system, which occur in abundance near centers. In addition, several numerical simulations are provided to illustrate the validity of the theorems as well as indicating their limitations as manifested by transitions to chaotic dynamics.Comment: 26 pages, 9 figures, submitted to the Journal of Mathematical Physic

    Pulses and Snakes in Ginzburg--Landau Equation

    Get PDF
    Using a variational formulation for partial differential equations (PDEs) combined with numerical simulations on ordinary differential equations (ODEs), we find two categories (pulses and snakes) of dissipative solitons, and analyze the dependence of both their shape and stability on the physical parameters of the cubic-quintic Ginzburg-Landau equation (CGLE). In contrast to the regular solitary waves investigated in numerous integrable and non-integrable systems over the last three decades, these dissipative solitons are not stationary in time. Rather, they are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. Numerical simulations reveal very interesting bifurcations sequences as the parameters of the CGLE are varied. Our predictions on the variation of the soliton amplitude, width, position, speed and phase of the solutions using the variational formulation agree with simulation results.Comment: 30 pages, 14 figure

    Manipulation of the dynamics of many-body systems via quantum control methods

    Full text link
    We investigate how dynamical decoupling methods may be used to manipulate the time evolution of quantum many-body systems. These methods consist of sequences of external control operations designed to induce a desired dynamics. The systems considered for the analysis are one-dimensional spin-1/2 models, which, according to the parameters of the Hamiltonian, may be in the integrable or non-integrable limits, and in the gapped or gapless phases. We show that an appropriate control sequence may lead a chaotic chain to evolve as an integrable chain and a system in the gapless phase to behave as a system in the gapped phase. A key ingredient for the control schemes developed here is the possibility to use, in the same sequence, different time intervals between control operations.Comment: 10 pages, 3 figure

    Coherent oscillations and incoherent tunnelling in one - dimensional asymmetric double - well potential

    Full text link
    For a model 1d asymmetric double-well potential we calculated so-called survival probability (i.e. the probability for a particle initially localised in one well to remain there). We use a semiclassical (WKB) solution of Schroedinger equation. It is shown that behaviour essentially depends on transition probability, and on dimensionless parameter which is a ratio of characteristic frequencies for low energy non-linear in-well oscillations and inter wells tunnelling. For the potential describing a finite motion (double-well) one has always a regular behaviour. For the small value of the parameter there is well defined resonance pairs of levels and the survival probability has coherent oscillations related to resonance splitting. However for the large value of the parameter no oscillations at all for the survival probability, and there is almost an exponential decay with the characteristic time determined by Fermi golden rule. In this case one may not restrict oneself to only resonance pair levels. The number of perturbed by tunnelling levels grows proportionally to the value of this parameter (by other words instead of isolated pairs there appear the resonance regions containing the sets of strongly coupled levels). In the region of intermediate values of the parameter one has a crossover between both limiting cases, namely the exponential decay with subsequent long period recurrent behaviour.Comment: 19 pages, 7 figures, Revtex, revised version. Accepted to Phys. Rev.

    The Hess-Appelrot system and its nonholonomic analogs

    Full text link
    This paper is concerned with the nonholonomic Suslov problem and its generalization proposed by Chaplygin. The issue of the existence of an invariant measure with singular density (having singularities at some points of phase space) is discussed

    Helmholtz bright and boundary solitons

    Get PDF
    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic Non-Linear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently-reported Helmholtz bright solitons, for this type of polynomial non-linearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterpart
    corecore