592 research outputs found

    Generalised Fourier Transform and Perturbations to Soliton Equations

    Get PDF
    A brief survey of the theory of soliton perturbations is presented. The focus is on the usefulness of the so-called Generalised Fourier Transform (GFT). This is a method that involves expansions over the complete basis of `squared olutions` of the spectral problem, associated to the soliton equation. The Inverse Scattering Transform for the corresponding hierarchy of soliton equations can be viewed as a GFT where the expansions of the solutions have generalised Fourier coefficients given by the scattering data. The GFT provides a natural setting for the analysis of small perturbations to an integrable equation: starting from a purely soliton solution one can `modify` the soliton parameters such as to incorporate the changes caused by the perturbation. As illustrative examples the perturbed equations of the KdV hierarchy, in particular the Ostrovsky equation, followed by the perturbation theory for the Camassa- Holm hierarchy are presented.Comment: 20 pages, no figures, to appear in: Discrete and Continuous Dynamical Systems

    Coulomb interaction in graphene: Relaxation rates and transport

    Full text link
    We analyze the inelastic electron-electron scattering in undoped graphene within the Keldysh diagrammatic approach. We demonstrate that finite temperature strongly affects the screening properties of graphene, which, in turn, influences the inelastic scattering rates as compared to the zero-temperature case. Focussing on the clean regime, we calculate the quantum scattering rate which is relevant for dephasing of interference processes. We identify an hierarchy of regimes arising due to the interplay of a plasmon enhancement of the scattering and finite-temperature screening of the interaction. We further address the energy relaxation and transport scattering rates in graphene. We find a non-monotonic energy dependence of the inelastic relaxation rates in clean graphene which is attributed to the resonant excitation of plasmons. Finally, we discuss the temperature dependence of the conductivity at the Dirac point in the presence of both interaction and disorder. Our results complement the kinetic-equation and hydrodynamic approaches for the collision-limited conductivity of clean graphene and can be generalized to the treatment of physics of inelastic processes in strongly non-equilibrium setups.Comment: 28 pages, 16 figure

    Conservation laws, exact travelling waves and modulation instability for an extended nonlinear Schr\"odinger equation

    Full text link
    We study various properties of solutions of an extended nonlinear Schr\"{o}dinger (ENLS) equation, which arises in the context of geometric evolution problems -- including vortex filament dynamics -- and governs propagation of short pulses in optical fibers and nonlinear metamaterials. For the periodic initial-boundary value problem, we derive conservation laws satisfied by local in time, weak H2H^2 (distributional) solutions, and establish global existence of such weak solutions. The derivation is obtained by a regularization scheme under a balance condition on the coefficients of the linear and nonlinear terms -- namely, the Hirota limit of the considered ENLS model. Next, we investigate conditions for the existence of traveling wave solutions, focusing on the case of bright and dark solitons. The balance condition on the coefficients is found to be essential for the existence of exact analytical soliton solutions; furthermore, we obtain conditions which define parameter regimes for the existence of traveling solitons for various linear dispersion strengths. Finally, we study the modulational instability of plane waves of the ENLS equation, and identify important differences between the ENLS case and the corresponding NLS counterpart. The analytical results are corroborated by numerical simulations, which reveal notable differences between the bright and the dark soliton propagation dynamics, and are in excellent agreement with the analytical predictions of the modulation instability analysis.Comment: 27 pages, 5 figures. To be published in Journal of Physics A: Mathematical and Theoretica

    Strong-field Phenomena in Periodic Systems

    Full text link
    The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field--matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed
    • …
    corecore