11 research outputs found

    Line Integral Solution of Hamiltonian Systems with Holonomic Constraints

    Full text link
    In this paper, we propose a second-order energy-conserving approximation procedure for Hamiltonian systems with holonomic constraints. The derivation of the procedure relies on the use of the so-called line integral framework. We provide numerical experiments to illustrate theoretical findings.Comment: 30 pages, 3 figures, 4 table

    Discrete mechanics and variational integrators

    Get PDF
    This paper gives a review of integration algorithms for finite dimensional mechanical systems that are based on discrete variational principles. The variational technique gives a unified treatment of many symplectic schemes, including those of higher order, as well as a natural treatment of the discrete Noether theorem. The approach also allows us to include forces, dissipation and constraints in a natural way. Amongst the many specific schemes treated as examples, the Verlet, SHAKE, RATTLE, Newmark, and the symplectic partitioned Runge–Kutta schemes are presented
    corecore