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We discuss the results of an article by Ruho� et al. (RPP96) on the numerical
simulation of constrained systems. We point out that some of them are well-
known. But we also show that in the Hamiltonian formalism their approach has
a number of interesting features and how these can be at least partially explained.

1. Introduction

Recently, Ruho� et al. (RPP96) presented a new approach to the numerical
integration of constrained systems. This classical problem is of great practical
importance in many �elds like robotics, vehicle or molecular dynamics.
Designing a method to numerically integrate a constrained system consists

of two steps: (i) choosing the equations of motion (due to the constraints one
has much freedom here) and (ii) choosing a numerical method to solve them.
Obviously, these two steps are not independent, as the numerical method depends
decisively on the way one treats the constraints in the equations of motion.
We discuss in this short note how Ruho� et al. dealt with both aspects. We

point out that within the Lagrangian formalism they rediscovered only well-
known results but that within the Hamiltonian formalism their approach has
a number of interesting features. We will give here only a brief survey of some of
them; a detailed discussion with proofs will appear elsewhere (Sei97).

2. Constrained Dynamics

Ruho� et al. considered a special case of constrained dynamics: a regular sys-
tem with imposed holonomic constraints. This should not be confused with the
constrained systems considered by Dirac (Dir64), namely singular or degenerate
systems where the Legendre transformation is not one-to-one.
For such systems there exist two basic strategies. Either one �nds minimal

coordinates eliminating the constraints or one keeps all coordinates and and must
then construct the constraint forces. Within the Lagrangian formalism this leads
to the Euler-Lagrange equations of second and �rst kind, respectively (Gol80;
Kuy93). In the engineering literature one often speaks of a state space and a
descriptor form, respectively, of the equations of motion.
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The confusion with the Dirac theory arises, because one way to derive the
Euler-Lagrange equations of the �rst kind consists of the arti�cial introduction of
a singular Lagrangian by adding the constraints with some multipliers to the orig-
inal Lagrangian L0. Ruho� et al. modi�ed this procedure (following (dLPP90))
by adding the time derivatives of the constraints.
This approach can already be found in the literature, although only in con-

nection with anholonomic constraints where it is known as vakonomic mechanics
(AKN88; Koz83). In the holonomic case, it was also studied (independently of
Ruho� et al.) under the name impetus-striction formalism by Dichmann et al.
(DM96; DMP96; MP95). They were especially interested in its application to
in�nite-dimensional systems like elastica or 
uids.
For anholonomic systems the vakonomic approach yields equations of mo-

tion which are not equivalent to those derived for example with the Principle
of d'Alembert. For holonomic constraints ��(q) = 0 the situation is simpler.
Comparing the Lagrangians L0 = L0 + ���� (which represents the usual way

to derive the Euler-Lagrange equations of the �rst kind) and L� = L0 + �� _��
(which corresponds to the approach of Ruho� et al.), we see that after a proper

identi�cation of the multipliers (�� = � _��) they di�er only by a total derivative.
Thus they lead to identical equations of motion.
Apparently, Ruho� et al. did not notice this fact. What they called \constrained

Lagrangian approach" yields in fact the well-known Euler-Lagrange equations of
the �rst kind; they only derived them in a di�erent way. Most works on the
numerical simulation of constrained systems are based on these equations.
One of the central results of (RPP96) is the statement that this approach was

superior (at least with respect to e�ciency) to using the Euler-Lagrange equations
of the second kind. This is rather well-known and indeed many programs for the
automatic generation of equations of motion of mechanical systems are based on
such a constrained approach.
But it is also well-known that one has to make a trade-o� here. In the un-

constrained formulation the dimension of the con�guration space is smaller and
hence one has less equations of motion. However, these are typically more compli-
cated; for example the mass matrix is usually no longer constant and less sparse.
In general, it depends on many factors which formulation is more e�cient.
In a comparison one should also take into account that there exist more e�cient

ways to evaluate the unconstrained equations of motion than the straightforward
use of the Euler-Lagrange equations applied by Ruho� et al. Recursive schemes
(see e. g. (Hol80)) also achieve a complexity linear in the number n of links. A
discussion of some of these approaches can be found in (Fea87).
We must thus conclude that Ruho� et al. presented only well-known material

for the Lagrangian formalism. The situation is di�erent in the Hamiltonian for-
malism. Adding the time derivative of the constraints yields di�erent momenta
compared with the standard approach.
Ruho� et al. compared mainly the unconstrained and the constrained formu-

lations. But actually their most important numerical result is the comparison of
the constrained Lagrangian and Hamiltonian formulations. They showed that the
constraint and the energy errors for the Hamiltonian version are several orders
of magnitude smaller. As the execution times of the Lagrangian version are only
slightly smaller, this is a striking result demanding an explanation.
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Ruho� et al. partially explained it by noting that the Lagrangian multipli-
ers are determined such that the constraints for the accelerations are satis�ed,
whereas the equations for the Hamiltonian multipliers ensure the preservation of
the momentum constraints. We will now indicate a somewhat di�erent view.
Denoting by p = @L0=@ _q the momenta of the classical approach, the ansatz of

Ruho� et al. yields as canonically conjugate momenta

p� = p+ ��
@��

@q
: (2:1)

This equation is the key for understanding the new approach. Instead of consid-
ering p� as momenta derived from a modi�ed Lagrangian L� one may interpret
(2.1) as part of a canonical transformation (q; p) $ (q�; p�) where q� = q for
those points satisfying the position constraints ��(q) = 0.
The position constraints ��(q) = 0 generate via the Dirac algorithm (Dir64)

the momentum constraints  �(q; p) = f��; H0g = 0 where H0 is the Hamiltonian
for the regular Lagrangian L0. In the approach of Ruho� et al. the canonical
transformation is used backwards. The multipliers �� are determined such that
for a point (q�; p�) with ��(q

�) = 0 the transformed point (q; p) satis�es not only
��(q) = 0 but also  �(q; p) = 0.
A closer look at the equations of motion of Ruho� et al. reveals that they

contain the momenta p� only in the form p� � ��@��=@q, i. e. they always apply
this canonical transformation. Thus we may say that these equations of motion
possess a kind of built-in projection on the momentum constraints and that it
is thus not surprising that these are preserved with high accuracy. But (RPP96)
o�ers no explanation why this should in
uence so drastically the position and
the energy errors. We will discuss this important point in the next section.

3. Di�erential Algebraic Equations

The Euler-Lagrange equations of the second kind are often preferred to those
of the �rst kind because of the numerical di�culties in integrating the latter ones.
They represent a system of di�erential algebraic equations and naive approaches
to their integration often su�er under a drift o� the constraint manifold. This
problem received much attention in the last twenty years (BCP96; HW96). The
simulation of constrained systems has always been a central topic here; see e. g.
the recent survey (Sim95) and the classical articles (FL91; GLG85).
There exist two basic possibilities to handle the problem of the drift. One

can use the above mentioned freedom in setting up the equations of motion to
obtain a di�erential algebraic equation which is less sensitive to numerical errors.
This is usually called stabilization (ACR94). Or one can design special numerical
methods preserving at last some of the constraints.
Obviously, the two possibilities can be combined; Ruho� et al. are in fact doing

this. Their new method to derive the Hamiltonian equations of motion can be
seen as a stabilization. Its e�ect does not only show in the smaller absolute values
of the constraint residuals but also in their growth. We integrated as a simple
example a 1-link pendulum with the constrained Lagrangian and the constrained
Hamiltonian formalism (in the terminology of (RPP96)). In the Lagrangian ap-
proach the position errors grow quadratically in time; in the Hamiltonian one
only linearly. The momentum errors always grow linearly.
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Much more important is however the e�ect on the integration error which is
not considered at all by Ruho� et al. Small constraint residuals alone are rather
useless, if this error is too large. We estimated it by comparing with the numerical
solution of the state space form for a ten times smaller step size. One �nds
that in the Lagrangian formalism the error grows cubically in time, whereas the
Hamiltonian formalism shows a slightly worse than linear growth. The absolute
values are again several orders of magnitude better.

A similar picture emerges, if one studies the energy error for this conservative
system. Ruho� et al. showed already that its absolute values are considerably
smaller for the Hamiltonian approach. But the growth rates are also di�erent:
quadratical in the Lagrangian formalism and about

p
t in the Hamiltonian one.

For the constrained Lagrangian approach we gave a theoretical explanation for
these error growth rates in (Sei96) using perturbation techniques.

As special numerical method Ruho� et al. proposed a simple post-processing,
namely orthogonal projection, of the results obtained by a conventional integra-
tor. This belongs to the oldest and simplest techniques for preserving constraints
(or invariants). Shampine (Sha86) studied it for one-step methods; Eich (Eic93)
extended his results to multi-step methods. In contrast to (RPP96) these works
also contain proofs of convergence and error estimates. Eich furthermore dis-
cusses the e�ect of the projections on the truncation error. A general overview of
projection techniques can be found in (EFLR90).

However, opposed to (RPP96) most of the numerical literature studies only
projections on the position constraints �� = 0. The constraints for the momenta
and velocities, respectively, are often ignored. But as Fig. 7 of (RPP96) clearly
shows, preservation of these can be very important. Unfortunately, Ruho� et
al. o�ered no explanation for this observation. They only stated that without a
correction the momenta grow; but this could be an e�ect speci�c to their test
problem and/or the numerical method they applied.

Alishenas (AO94) analyzed this e�ect with perturbation techniques. He showed
for the Lagrangian formalism that projections on the velocity constraints reduce
the growth of the errors. Without projections the integration error increases cu-
bically in time. Velocity corrections reduce this to quadratic growth, whereas
position corrections have no e�ect on the growth. For the Hamiltonian formalism
we con�rmed recently Alishenas' results theoretically and numerically (Sei96).

In order to apply these results to the constrained Hamiltonian approach we
must study the relation between the orthogonal projections of (AO94; Sei96)
and the \canonical projection" (2.1) used by Ruho� et al. For an orthogonal
projection one makes an ansatz precisely of the form (2.1). If one compares how
the multipliers �� are determined, one discovers that the canonical transformation
discussed in the last section is an orthogonal projection!

Thus we can indeed apply the results of (AO94; Sei96) for analyzing the ap-
proach of Ruho� et al., as they automatically use in each time step of the nu-
merical integration orthogonally projected momenta. When Ruho� et al. applied
additional momentum corrections, they only improved the numerical result of
the �rst projection, i. e. e�ectively they solved the arising linear system for the
multipliers �� iteratively in order to obtain an even smaller momentum con-
straint residual. That this is sometimes necessary only further emphasizes the
importance of the momentum constraints.
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4. Conclusion

Ruho� et al. proposed an interesting new approach for setting up Hamiltonian
equations of motion for a regular system with imposed holonomic constraints.
Compared with the standard approach based on the Euler-Lagrange equations of
the �rst kind, it leads to signi�cantly smaller errors. This holds not only for the
constraint residuals but also for the integration and the energy error. Further-
more, all errors grow considerably slower.
In order to understand this numerical stability one must realize the importance

of the momentum constraints which are often neglected. One has considerable
freedom in writing the equations of motion of a constrained system. While the
various formulations are physically equivalent, their numerical stability can be
very di�erent. (RPP96) belongs to the few works that try to exploit this free-
dom in order to obtain e�cient and stable numerical simulation schemes. Other
attempts can be found in (Sim93; Sei95; Sei96).
Within the Lagrangian formalism the approach of Ruho� et al. coincides with

the usual one based on the Euler-Lagrange equations of the �rst kind. The use
of (orthogonal) projection methods for these equations is quite common. They
can be made more e�cient by combining the projections with the numerical
integration of the underlying di�erential equations. This reduces the necessary
linear algebra compared with the simple post-processing applied in (RPP96).
The restriction of Ruho� et al. to Lagrangians which are quadratic in the ve-

locities is unnecessary. Obviously, they imposed this condition only to ensure that
they can explicitly compute the multipliers. For more general Lagrangians these
are determined by a nonlinear system. However, a closer look at the equations of
motion reveals that all terms containing derivatives of the multipliers cancel. For
a numerical evaluation of the equations of motion it su�ces to have numerical
values for the multipliers which can be easily computed. Thus this approach can
be applied to much more general systems, too.
Especially for the long term integration of Hamiltonian systems symplectic

integrators (SSC94) are very popular, as they maintain many qualitative features
of the exact solution. The approach of Ruho� et al. is of considerable interest in
this context, as for example the composition methods of Reich (Rei96) are closely
related to it. This will be discussed in more detail in (Sei97).

References

U.M. Ascher, H. Chin, and S. Reich. Stabilization of DAEs and invariant manifolds. Num.

Math., 67:131{149, 1994.

V.I. Arnold, V.V. Kozlov, and A.I. Neishtadt. Mathematical aspects of classical and celestial
mechanics. In V.I. Arnold, editor, Dynamical Systems III. Springer-Verlag, Berlin, 1988.

T. Alishenas and �O. �Olafsson. Modeling and velocity stabilization of constrained mechanical
systems. BIT, 34:455{483, 1994.

K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-Value Problems in
Di�erential-Algebraic Equations. Classics in Applied Mathematics 14. SIAM, Philadelphia,
1996.

P.A.M. Dirac. Lectures on Quantum Mechanics. Belfer Graduate School Monograph Series 3.
Yeshiva University, New York, 1964.

S.W. de Leeuw, J.W. Perram, and H.G. Petersen. Hamilton's equations for constrained dynam-
ical systems. J. Stat. Phys., 61:1203{1222, 1990.



D
R

A
FT

6 Werner M. Seiler

D.J. Dichmann and J.H. Maddocks. An impetus-striction simulation of the dynamics of an
elastica. J. Nonlin. Sci., 6:271{292, 1996.

D.J. Dichmann, J.H. Maddocks, and R.L. Pego. Hamiltonian dynamics of an elastica and the
stability of solitary waves. Arch. Rat. Mech. Anal., 135:357{396, 1996.

E. Eich, C. F�uhrer, B. Leimkuhler, and S. Reich. Stabilization and projection methods for
multibody dynamics. Research Report A281, Helsinki University of Technology, Institute of
Mathematics, 1990.

E. Eich. Convergence results for a coordinate projection method applied to mechanical systems
with algebraic constraints. SIAM J. Num. Anal., 30:1467{1482, 1993.

R. Featherstone. Robot Dynamics Algorithms. International Series in Engineering and Computer
Science 22. Kluwer, Boston, 1987.

C. F�uhrer and B.J. Leimkuhler. Numerical solution of di�erential-algebraic equations for con-
strained mechanical motion. Num. Math., 59:55{69, 1991.

C.W. Gear, B.J. Leimkuhler, and G.K. Gupta. Automatic integration of Euler-Lagrange equa-
tions with constraints. J. Comp. Appl. Math., 12/13:77{90, 1985.

H. Goldstein. Classical Mechanics. Addison-Wesley, New York, 1980.

J.M. Hollerbach. A recursive Lagrangian formulation of manipulator dynamics and a compara-
tive study of dynamics formulation complexity. IEEE Trans. Syst. Man Cyber., 10:730{736,
1980.

E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II. Springer Series in Com-
putational Mathematics 14. Springer-Verlag, Berlin, 1996.

V.V. Kozlov. Realization of nonintegrable constraints in classical mechanics. Sov. Phys. Dokl.,
28:735{737, 1983.

F. Kuypers. Klassische Mechanik. VCH Verlagsges., Weinheim, 1993.

J.H. Maddocks and R.L. Pego. An unconstrained Hamiltonian formulation for incompressible

uid 
ow. Comm. Math. Phys., 170:207{217, 1995.

S. Reich. Symplectic integration of constrained Hamiltonian systems by composition methods.
SIAM J. Num. Anal., 33:475{491, 1996.

P.T. Ruho�, E. Pr�stegaard, and J.W. Perram. E�cient algorithms for simulating complex
mechanical systems using constraint dynamics. Proc. Roy. Soc. Lond. A, 452:1139{1165,
1996.

W.M. Seiler. Involution and constrained dynamics II: The Faddeev-Jackiw approach. J. Phys. A,
28:7315{7331, 1995.

W.M. Seiler. Numerical integration of constrained Hamiltonian systems using Dirac brackets.
Universit�at Karlsruhe Preprint, 1996.

W.M. Seiler. Impetus-striction formalism and the symplectic integration of constrained Hamil-
tonian systems. In preparation, 1997.

L.F. Shampine. Conservation laws and the numerical solution of ODEs. Comp. Math. Appl.,
12:1287{1296, 1986.

B. Simeon. An extended descriptor form for the numerical integration of multibody systems.
Appl. Num. Math., 13:209{220, 1993.

B. Simeon. MBSPACK | numerical integration software for constrained mechanical motion.
Surv. Math. Ind., 5:169{202, 1995.

J.M. Sanz-Serna and M.P. Calvo. Numerical Hamiltonian Problems. Applied Mathematics and
Mathematical Computation 7. Chapman&Hall, London, 1994.


