16 research outputs found

    Harmonic domain modelling and analysis of the electrical power systems of onshore and offshore oil and gas field /platform

    Get PDF
    This thesis first focuses on harmonic studies of high voltage cable and power line, more specifically the harmonic resonance. The cable model is undergrounded system, making it ideal for the harmonics studies. A flexible approach to the modelling of the frequency dependent part provides information about possible harmonic excitations and the voltage waveform during a transient. The power line is modelled by means of lumped-parameters model and also describes the long line effect. The modelling depth and detail of the cable model influences the simulation results. It compares two models, first where an approximate model which make use of complex penetration is used and the second where an Bessel function model with internal impedance is used. The both models incorporate DC resistance, skin effect and their harmonic performances are investigated for steady-state operating condition. The methods illustrate the impotance of including detailed representation of the skin effect in the power line and cable models, even when ground mode exists. The cable model exhibit lower harmonics comparable to overhead transmission lines due to strong influence of the ground mode. Due to the application of voltage source converter (VSC) technology and pulse width modulation (PWM) the VSC-HVDC has a number of potential advantages as compared with CSC-HVDC, such as short circuit current reduction, independent control of active power and reactive power, etc. With these advantages VSC-HVDC will likely be widely used in future oil and gas transmission and distribution systems. Modular multilevel PWM converter applies modular approach and phase-shifted concepts achieving a number of advantages to be use in HVDC power transmission. This thesis describes the VSC three-phase full-bridge design of sub-module in modular multilevel converter (MMC). The main research efforts focus on harmonic reduction using IGBTs switches, which has ON and OFF capability. The output voltage waveforms multilevel are obtained using pulse width modulation (PWM) control. The cascaded H-bridge (CHB) MMC is used to investigate for two-level, five-level, seven-level, nine-level converter staircase waveforms. The results show that the harmonics are further reduced as the sub-module converter increases. The steady-state simulation model of the oil platform for harmonic studies has been developed using MATLAB. In order to save computational time aggregated models are used. The load on the platforms consists of passive loads, induction motors, and a constant power load representing variable speed drives on the platforms. The wind farm consists of a wind turbine and an induction machine operating at fixed speed using a back-to-back VSC. Simulations are performed on system harmonics that are thought to be critical for the operation of the system. The simulation cases represent large and partly exaggerated disturbances in order to test the limitations of the system. The results show low loss, low harmonics, and stable voltage and current. With the developments of multilevel VSC technology in this thesis, multi-terminal direct current (MTDC) systems integrating modular multilevel converters at all nodes may be more easily designed. It is shown that self-commutated Voltage Source Converters (VSC) is more flexible than the more conventional Current Source Converter (CSC) since active and reactive powers are controlled independently. The space required by the equipment of this technology is smaller when compared to the space used by the CSCs. In addition, the installation and maintenance costs are reduced. With these advantages, it will be possible for several oil and gas production fields connected together by multi-terminal DC grid. With this development the platforms will not only share energy from the wind farms, but also provide cheaper harmonic mitigation solutions. The model of a multi-terminal hypothetical power system consisting of three oil and gas platforms and two offshore wind farm stations without a common connection to the onshore power grid is studied. The connection to the onshore grid is realized through a High Voltage Direct Current (HVDC) transmissions system based on Voltage Source Converter (VSC) technology. The proposed models address a wide array of harmonic mitigation solutions, i.e., (i) Local harmonic mitigation (ii) semi-global harmonic mitigation and (iii) global harmonic mitigation. In addition, a computationally-efficient technique is proposed and implemented to impose the operating constraints of the VSC and the host IGBT-PWM switches within the context of the developed harmonic power flow (HPF). Novel closed forms for updating the corresponding VSC power and voltage reference set-points are proposed to guarantee that the power-flow solution fully complies with the VSC constraints. All the proposed platform models represent (i) the high voltage AC/DC and DC/AC power conversion applications under balanced harmonic power-flow scenario and (ii) all the operating limits and constraints of the nodes and its host modular converter (iii) three-phase VSC coupled IGBT-PWM switches

    Harmonics in transmission power systems

    Get PDF

    Modeling for harmonic analysis of ac offshore wind power plants

    Get PDF
    This Ph.D. dissertation presents the work carried out on the modeling, for harmonic analysis, of AC offshore wind power plants (OWPP). The studies presented in this Ph.D. thesis are oriented to two main aspects regarding the harmonic analysis of this type of power system. The first aspect is the modeling and validation of the main power components of an AC offshore wind power plant. Special emphasis is focused on the modeling of wind turbines, power transformers, submarine cables, and the interaction between them. A proposal of a wind turbine harmonic model is presented in this dissertation to represent the behavior of a wind turbine and its harmonics, up to 5 kHz. The distinctive structure of this model consists of implementing a voltage source containing both the fundamental component and the harmonics emitted by the converter. For the case of transformer and submarine cables, the frequency-dependent behavior of certain parameters is modeled for frequencies up to 5 kHz as well. The modeling of the frequency-dependent characteristics, due to skin and proximity effect, is achieved by means of Foster equivalent networks for time-domain simulations. Regarding the interaction between these power components, two complementary modeling approaches are presented. These are the Simulink®-based model and an analytical sequence network model of the passive components of the OWPP. A description of model development and parameterization is carried out for both modeling approaches considering a scenario that is defined according to a real offshore wind power plant. On the other hand, the second aspect of this Ph.D. thesis is oriented to the analysis of the issues that appear in offshore wind power plants in relation to harmonic amplification risk, compliance of grid codes in terms of harmonics and power factor, and the design of effective solutions to improve the harmonic emission of the facility. The technical solutions presented in this Ph.D. thesis cover aspects regarding modulation strategies, design of the connection filter of the grid side converter and management of the operation point of the grid side converter of wind turbines. This last by means of changing the setpoint of certain variables. As inferred, these are solutions from the perspective of the wind turbine manufacturer

    Harmonics in Offshore Wind Power Plants Employing Power Electronic Devices in the Transmission System

    Get PDF

    Switching overvoltages in offshore wind power grids

    Get PDF

    Interaction of DC-DC converters and submarine power cables in offshore wind farm DC networks

    Get PDF
    Offshore wind power is attracting increasing levels of research and investment. The use of HVDC transmission and the development of DC grids are topics with similar high levels of interest that go hand in hand with the development of large scale, far from shore wind farms. Despite increased capital cost of some components, DC power transmission can have significant advantages over AC transmission, in particular in the offshore environment. These advantages are well established for large scale, long distance point to point transmission. This thesis assesses the suitability of a multi-terminal DC power collection network, with short cables and relatively small amounts of power, addresses a number of the technical challenges in realising such a network and shows methods for overall system cost reduction. Technical and modelling challenges result from the interaction between power electronic DC-DC converters and the cables in a DC transmission network. In particular, the propagation of the ripple current in bipole DC transmission cables constructed with a metallic sheath and armour is examined in detail. The finite element method is used to predict the response of the cable to the ripple current produced by the converters. These results are used along with wave propagation theory to demonstrate that cable design plays a crucial role in the behaviour of the DC system. The frequency dependent cable models are then integrated with time domain DC-DC converter models. The work in the thesis is, broadly, in two parts. First, it is demonstrated that care and accuracy are required in modelling the cables in the DC transmission system and appropriate models are implemented and validated. Second, these models are combined with DC-DC converter models and used to demonstrate the practicality of the DC grid, make design recommendations and assess its suitability when compared with alternative approaches (e.g. AC collection and/or transmission)

    Methodology for Design and Operation of Active Building-Integrated Thermal Energy Storage Systems

    Get PDF
    Thermal energy storage (TES) systems that are part of the building fabric and are exposed to room air can be described as building-integrated thermal energy storage (BITES) systems. BITES systems with appropriate space conditioning strategies can significantly improve the thermal performance of buildings. The present study focuses on active BITES systems, which embody controllable internal charge/discharge system. Thermal energy can be stored and released in an appropriate manner to control zone temperature for improved comfort and energy performance. To assist the design and control analysis of active BITES systems, methodologies are first developed for three numerical modeling approaches: time domain lumped-parameter finite difference model, frequency domain analytical model and regression model. The regression model is demonstrated for the charge control of active BITES cooling using outdoor cool air. A frequency domain methodology is presented with guidelines for the design and operation of active BITES systems that facilitate primary space conditioning with low operating energy, relatively flat power demand, and improved thermal comfort. Three key factors considered by the methodology are as follows: sufficient thermal coupling between the BITES systems and their thermal zones, integration of design and operation, and integration of thermal and structural designs. A heuristic approach based on building physics is suggested for establishing a near-optimal room air temperature set-profile. Dynamic response of active systems derived from their frequency domain transfer functions are used to enhance the set-profile. Using the set-profile and corresponding space conditioning load profile as inputs, the charge and discharge rates for the active BITES can be predicted over a desired time horizon. A bounding-condition-based design approach is presented. Finally, a procedure for the integration of structural and thermal designs is demonstrated with focus on ventilated BITES systems using standard structural components and their variations. The methodology and guidelines are general and applicable to different BITES systems and different buildings with different thermal and structural loads

    NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    The contractor's report contains all sixteen final reports prepared by the participants in the 1989 Summer Faculty Fellowship Program. Reports describe research projects on a number of different topics. Interface software, metal corrosion, rocket triggering lightning, automatic drawing, 60-Hertz power, carotid-cardiac baroreflex, acoustic fields, robotics, AI, CAD/CAE, cryogenics, titanium, and flow measurement are discussed
    corecore