45,319 research outputs found

    From coarse wall measurements to turbulent velocity fields through deep learning

    Get PDF
    This work evaluates the applicability of super-resolution generative adversarial networks (SRGANs) as a methodology for the reconstruction of turbulent-flow quantities from coarse wall measurements. The method is applied both for the resolution enhancement of wall fields and the estimation of wall-parallel velocity fields from coarse wall measurements of shear stress and pressure. The analysis has been carried out with a database of a turbulent open-channel flow with friction Reynolds number Reτ=180Re_{\tau}=180 generated through direct numerical simulation. Coarse wall measurements have been generated with three different downsampling factors fd=[4,8,16]f_d=[4,8,16] from the high-resolution fields, and wall-parallel velocity fields have been reconstructed at four inner-scaled wall-normal distances y+=[15,30,50,100]y^+=[15,30,50,100]. We first show that SRGAN can be used to enhance the resolution of coarse wall measurements. If compared with direct reconstruction from the sole coarse wall measurements, SRGAN provides better instantaneous reconstructions, both in terms of mean-squared error and spectral-fractional error. Even though lower resolutions in the input wall data make it more challenging to achieve highly accurate predictions, the proposed SRGAN-based network yields very good reconstruction results. Furthermore, it is shown that even for the most challenging cases the SRGAN is capable of capturing the large-scale structures that populate the flow. The proposed novel methodology has great potential for closed-loop control applications relying on non-intrusive sensing

    Locally-adapted convolution-based super-resolution of irregularly-sampled ocean remote sensing data

    Full text link
    Super-resolution is a classical problem in image processing, with numerous applications to remote sensing image enhancement. Here, we address the super-resolution of irregularly-sampled remote sensing images. Using an optimal interpolation as the low-resolution reconstruction, we explore locally-adapted multimodal convolutional models and investigate different dictionary-based decompositions, namely based on principal component analysis (PCA), sparse priors and non-negativity constraints. We consider an application to the reconstruction of sea surface height (SSH) fields from two information sources, along-track altimeter data and sea surface temperature (SST) data. The reported experiments demonstrate the relevance of the proposed model, especially locally-adapted parametrizations with non-negativity constraints, to outperform optimally-interpolated reconstructions.Comment: 4 pages, 3 figure

    Statistical performance analysis of a fast super-resolution technique using noisy translations

    Full text link
    It is well known that the registration process is a key step for super-resolution reconstruction. In this work, we propose to use a piezoelectric system that is easily adaptable on all microscopes and telescopes for controlling accurately their motion (down to nanometers) and therefore acquiring multiple images of the same scene at different controlled positions. Then a fast super-resolution algorithm \cite{eh01} can be used for efficient super-resolution reconstruction. In this case, the optimal use of r2r^2 images for a resolution enhancement factor rr is generally not enough to obtain satisfying results due to the random inaccuracy of the positioning system. Thus we propose to take several images around each reference position. We study the error produced by the super-resolution algorithm due to spatial uncertainty as a function of the number of images per position. We obtain a lower bound on the number of images that is necessary to ensure a given error upper bound with probability higher than some desired confidence level.Comment: 15 pages, submitte

    A Joint Intensity and Depth Co-Sparse Analysis Model for Depth Map Super-Resolution

    Full text link
    High-resolution depth maps can be inferred from low-resolution depth measurements and an additional high-resolution intensity image of the same scene. To that end, we introduce a bimodal co-sparse analysis model, which is able to capture the interdependency of registered intensity and depth information. This model is based on the assumption that the co-supports of corresponding bimodal image structures are aligned when computed by a suitable pair of analysis operators. No analytic form of such operators exist and we propose a method for learning them from a set of registered training signals. This learning process is done offline and returns a bimodal analysis operator that is universally applicable to natural scenes. We use this to exploit the bimodal co-sparse analysis model as a prior for solving inverse problems, which leads to an efficient algorithm for depth map super-resolution.Comment: 13 pages, 4 figure

    Numerical methods for coupled reconstruction and registration in digital breast tomosynthesis.

    Get PDF
    Digital Breast Tomosynthesis (DBT) provides an insight into the fine details of normal fibroglandular tissues and abnormal lesions by reconstructing a pseudo-3D image of the breast. In this respect, DBT overcomes a major limitation of conventional X-ray mam- mography by reducing the confounding effects caused by the superposition of breast tissue. In a breast cancer screening or diagnostic context, a radiologist is interested in detecting change, which might be indicative of malignant disease. To help automate this task image registration is required to establish spatial correspondence between time points. Typically, images, such as MRI or CT, are first reconstructed and then registered. This approach can be effective if reconstructing using a complete set of data. However, for ill-posed, limited-angle problems such as DBT, estimating the deformation is com- plicated by the significant artefacts associated with the reconstruction, leading to severe inaccuracies in the registration. This paper presents a mathematical framework, which couples the two tasks and jointly estimates both image intensities and the parameters of a transformation. Under this framework, we compare an iterative method and a simultaneous method, both of which tackle the problem of comparing DBT data by combining reconstruction of a pair of temporal volumes with their registration. We evaluate our methods using various computational digital phantoms, uncom- pressed breast MR images, and in-vivo DBT simulations. Firstly, we compare both iter- ative and simultaneous methods to the conventional, sequential method using an affine transformation model. We show that jointly estimating image intensities and parametric transformations gives superior results with respect to reconstruction fidelity and regis- tration accuracy. Also, we incorporate a non-rigid B-spline transformation model into our simultaneous method. The results demonstrate a visually plausible recovery of the deformation with preservation of the reconstruction fidelity
    • …
    corecore