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ABSTRACT

This work evaluates the applicability of super-resolution generative adversarial networks (SRGANs) as a methodology for the reconstruction of
turbulent-flow quantities from coarse wall measurements. The method is applied both for the resolution enhancement of wall fields and the estima-
tion of wall-parallel velocity fields from coarse wall measurements of shear stress and pressure. The analysis has been carried out with a database of
a turbulent open-channel flow with a friction Reynolds number Res ¼ 180 generated through direct numerical simulation. Coarse wall measure-
ments have been generated with three different downsampling factors fd ¼ ½4; 8; 16� from the high-resolution fields, and wall-parallel velocity fields
have been reconstructed at four inner-scaled wall-normal distances yþ ¼ ½15; 30; 50; 100�. We first show that SRGAN can be used to enhance the
resolution of coarse wall measurements. If compared with the direct reconstruction from the sole coarse wall measurements, SRGAN provides better
instantaneous reconstructions, in terms of both mean-squared error and spectral-fractional error. Even though lower resolutions in the input wall
data make it more challenging to achieve highly accurate predictions, the proposed SRGAN-based network yields very good reconstruction results.
Furthermore, it is shown that even for the most challenging cases, the SRGAN is capable of capturing the large-scale structures that populate the
flow. The proposed novel methodology has a great potential for closed-loop control applications relying on non-intrusive sensing.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0058346

I. INTRODUCTION

In recent years, research in deep neural networks (DNNs) has
been fueled by new available computational resources, which have
brought a wide variety of new techniques for visual object recognition,
object detection, and speech recognition, among many others.1 The
rise of DNNs in many applications, such as medicine,2,3 climate,4 wild-
life ecology,5 physics,6,7 or sustainability,8 has not been overlooked in
fluid-mechanics research.9,10 Some of the outstanding applications of
DNNs in fluid mechanics are the improvement of Reynolds-averaged
Navier–Stokes simulations,11 the extraction of turbulence theory for
two-dimensional flow,12 prediction of temporal dynamics,13,14 or the
embedding of physical laws in DNN predictions.15

Generative adversarial networks (GANs), first introduced in Ref.
16, are one of the latest advances in DNN research. Based on game
theory, GANs are composed of two competing networks: a generator
that tries to produce an artificial output, which mimics reality, and a

discriminator, which is in charge of distinguishing between reality and
artificial outputs. During training, the generator network makes its
output more realistic by improving the features that the discriminator
identified as artificial. Among the different areas in which GANs have
been applied successfully, their use to enhance image resolution stands
out.17,18 In fluid-mechanics research, they have been successfully
applied to recover high-resolution fields in different types of flow, such
as the wake behind one or two side-by-side cylinders19 or volumetric
smoke data.20 While in these works, the training has been carried out
with a supervised approach, i.e., with paired high- and low-resolution
flow fields, GANs have been recently applied with an unsupervised
approach to enhance the resolution of homogeneous turbulence and
channel flows.21 GANs are now challenging other resolution-
enhancement strategies based on convolutional neural networks
(CNNs), which showed to be successful for the cases of the flow
around a cylinder, two-dimensional decaying isotropic turbulence,22
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and channel flows.23 More recently, Ref. 24 has proposed a methodol-
ogy based on CNNs to recover high-resolution sequences of flow fields
in homogeneous isotropic and wall turbulence from the low-
resolution fields at the beginning and end of the sequence.

CNNs have also been used successfully to estimate flow fields
using field measurements of wall shear and/or pressure. Several meth-
ods have been proposed, such as the direct reconstruction of the flow
field from the wall quantities using fully convolutional networks
(FCNs),25,26 or the use of proper orthogonal decomposition27 (POD)
in combination with CNNs28 and FCNs.26 Moreover, Ref. 28 studied
the effect of the wall-resolution measurements on the predictions
accuracy, showing that their architecture was able to continue provid-
ing predictions of similar accuracy for downsampling factors up to 4.
When a limited number of sensors is available, shallow neural net-
works (SNNs) offer another option for this task. Reference 29 com-
pared SNNs with POD for the reconstruction of a circular cylinder
wake, sea surface temperature, and decaying homogeneous isotropic
turbulence, showing that the new data-driven approach outperforms
the traditional one.

In the first part of the present work, a GAN-based methodology
is proposed to recover high-resolution fields of wall measurements.
Because the results are very positive when performing this task, and it
has already been shown that GANs can be used successfully in
enhancing turbulent-flow resolution,21 the second part of this work
extends their use to reconstruct high-resolution wall-parallel flow
fields from coarse wall measurements. This method is compared with
the FCN-POD architecture proposed in Ref. 26. The choice is based
on the proven capability of this network to deal with low-resolution
input information.28 This paper is organized as follows: Sec. II outlines
the details of the numerical database used for this study and presents
the different DNNs employed for that purpose; the main results for
wall-resolution enhancement are provided in Sec. III, while the flow-
reconstruction results are reported in Sec. IV. To close the paper,
Sec. V presents the main conclusions of the work.

II. METHODOLOGY

This section presents the details of the numerical database
employed for this study as well as the DNN architectures and the
training methodology with which they have been optimized.
Throughout this paper x, y, and z denote the streamwise, wall-normal,
and spanwise directions, respectively, with u, v, and w referring to their
corresponding instantaneous velocity fluctuations. Streamwise and
spanwise wall-shear-stress fluctuations are referred to as swx and swz ,
respectively, with pw denoting the pressure fluctuations at the wall.

A. Dataset description

The methodology proposed in this work has been tested with a
direct numerical simulation (DNS) of a turbulent open-channel flow
generated with the pseudo-spectral code SIMSON.30 The simulation
domain extends 4ph� h� 2ph (where h is the channel height) in the
streamwise, wall-normal, and spanwise directions, respectively, with
the flow represented by 65 Chebyshev modes in the wall-normal direc-
tion and with 192 Fourier modes in the streamwise and spanwise
directions. The simulation is characterized by a friction Reynolds
number Res ¼ 180, which is based on h and the friction velocity
us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
(where sw is the magnitude of the wall-shear stress and

q is the fluid density). The superscript “þ” denotes inner-scaled

quantities, using us for the velocities and the viscous length ‘� ¼ �=us
(where � is the fluid kinematic viscosity) for the distances. DNNs have
been trained with 50 400 samples separated by Dtþ ¼ 5:08, while
3125 samples with a time separation Dtþ ¼ 1:69 have been used for
testing them. For further simulation details, see Ref. 26.

Wall information, used as input to reconstruct wall-parallel fluc-
tuating velocity fields, is composed of streamwise and spanwise shear
stress as well as pressure fluctuations. To assess the capability of our
methodology to reconstruct turbulent wall and flow fields from coarse
wall measurements, three different sets of downsampled wall fields
have been generated, with downsampling factors fd ¼ ½4; 8; 16�. Note
that fd is defined as the resolution reduction in each direction; thus, a
downsampling factor of fd yields a downsampled field with a number
of points equal to f �2

d times the original. It has to be noted that fd val-
ues of two and four were considered in Ref. 28, although for a test case
with larger Res. The reconstruction of the fluctuating velocity fields is
evaluated at four different inner-scaled wall-normal distances:
yþ ¼ ½15; 30; 50; 100�.

B. Super-resolution generative adversarial networks

Super-resolution GAN (SRGAN) is proposed as a method to
reconstruct turbulent wall-measurement fields. Additionally, SRGANs
are explored also for direct estimation of velocity fields in wall-parallel
planes. A typical SRGAN architecture consists of two networks: a gen-
erator (G) and a discriminator (D); G is in charge of generating a high-
resolution artificial image ~HR from its low-resolution counterpart LR,
whereas D is in charge of distinguishing between high-resolution real
imagesHR and artificial ones. Note that the purpose of this work is not
to generate a custom architecture to tackle fluid-mechanics cases, since
these types of DNNs are already available in the literature.19–21

Therefore, the architecture presented in Ref. 17 was used in this study.
It uses a CNN as a generator, where the main core is composed of 16
residual blocks,31 and the resolution increase is carried out at the end of
the network by means of log2ðfdÞ sub-pixel convolution layers.32 In the
case of flow-field reconstruction with full-resolution wall data as input,
the sub-pixel convolution layers are removed. For the discriminator,
convolution layers are also used before adding two fully connected
layers, using a sigmoid activation in the last one to obtain a probability
to discern whether the high-resolution input is real or not. A schematic
view of the generator network is shown in Fig. 1(a), and the rest of
details can be found in Ref. 17. The discriminator loss is defined as

LD ¼ �E logDðHRÞ½ � �E log ð1� DðGðLRÞÞÞ½ �: (1)

For the generator loss, we have used the perceptual loss,17 where
the content loss is evaluated with the pixel-based mean-squared error
betweenHR and ~HR, leading to

LG ¼ 1
NxNz

XNx

i¼1

XNz

j¼1

jGðLRÞi;j � HRi;jj2 � kLD; (2)

where Nx and Nz are the number of grid points in the streamwise and
spanwise directions for the high-resolution images (192 for both of
them in our case), respectively and k is a scalar to weight the value of
the adversarial loss, set to 10�3. The weights of the model for each
downsampling case have been optimized for 30 epochs using the
Adam algorithm33 with a learning rate 10�4.
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C. POD-based fully convolutional networks

The baseline method for assessing the quality of flow reconstruc-
tions achieved by SRGAN is the FCN-POD approach.26,28 This
method divides the turbulent flow fields into Ns two-dimensional sub-
domains of Np � Np grid points, and POD is performed on each of
these subdomains. The number of subdomains is chosen based on
Res, with the purpose of ensuring that 90% of the flow kinetic energy
is contained within Oð102Þ POD modes, which can be represented by
convolutional filters. For the Res ¼ 180 case, each field is divided into
12� 12 subdomains, each of them with 16� 16 grid points. The pro-
posed architecture will reconstruct this three-dimensional tensor of
POD coefficients from the wall quantities; this tensor is later converted
into the flow field by projecting the POD coefficients of each subdo-
main into its corresponding basis. Note that this method does not
ensure continuity between subdomains; nevertheless, the convolu-
tional layers have been shown to provide reasonably smooth flow
fields.26 For each wall-normal distance, a different model has been
used; the weights of which have been optimized for 30 epochs using
the Adam optimizer33 with an � ¼ 0:1, a learning rate of 10�3, and an
exponential decay starting from epoch 10. A schematic representation
of the architecture is shown in Fig. 1(b), and the rest of the implemen-
tation details can be found in Ref. 26. For the case of coarse input data,
a modified version of the FCN-POD model has been used. To deal
with the different sizes of the input and output tensors, log2ðfdÞ pool-
ing layers have been removed from the original model.

III. ASSESSMENT OF RESOLUTION ENHANCEMENT
FOR WALL MEASUREMENTS

The quality of the resolution enhancement of the wall fields is
evaluated first. Figure 2 shows an instantaneous field of the streamwise
and spanwise wall-shear-stress and pressure fluctuations for the DNS
reference and the SRGAN predictions. While the reconstructions from

fields with fd ¼ 4 and fd ¼ 8 recover almost all the flow features pre-
sent in the DNS references, the instantaneous field for fd ¼ 16 exhibits
loss of small-scale details. Moreover, it appears that the high-intensity
regions are attenuated for the latter case. Note, however, that the loca-
tions and sizes of the largest flow structures are very well represented
even for fd¼ 16.

The first observations on the resolution-enhancement perfor-
mance with respect to fd obtained from the inspection of instantaneous
fields are confirmed when analyzing the mean-squared-error of those
fields. The errors, normalized with the standard deviation of each
quantity, are reported in Table I. SRGANs show excellent results for fd
¼ 4 in the three wall quantities and confirm the performance decay
between fd ¼ 8 and fd ¼ 16. When assessing the performance differ-
ences among wall quantities, it is clear that with larger downsampling
factors, the errors in the streamwise wall-shear-stress fields are lower
than for the other two wall quantities. This behavior can be ascribed to
the spatial organization of streamwise wall-shear-stress fluctuations,
which exhibit a characteristic alignment in the streamwise direction.

The pre-multiplied two-dimensional inner-scaled spectra for the
three wall quantities are reported in Fig. 3. The high-energy peak con-
taining 90% or more of swx is well captured by the predictions with
fd¼ 4 and fd¼ 8, while for fd¼ 16, this is not recovered, even showing
a significant attenuation of 50% of the total energy content. The energy
attenuation is even stronger for swz and pw, where the predictions of
fd ¼ 4 are the only ones capturing the energy distribution for both
quantities. In the case of fd ¼ 16, the attenuation is so significant that
even the 50% energy-content level is not recovered. The distribution
of scales over a larger range also explains why the swx error is smaller
than that of the other two wall quantities, since for the first one, the
SRGAN architecture deals with a lower parametric space.

Although the scope of this work is not to develop a customized
SRGAN architecture for wall turbulence, here, we briefly compare our

FIG. 1. Schematic view of the DNN architectures for (a) generator network in SRGAN and (b) FCN-POD. The color coding for each layer is 2D-convolution (beige), paramet-
ric-ReLU-activation (dark green), batch-normalization (blue), sub-pix-convolution (pink), ReLU-activation (light green), and max-pooling (red) layers. The kernel size and the
number of filters are shown at the bottom of the convolution layers.
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results with those of other studies in the literature. For example, Ref. 21
used an unsupervised GAN to reconstruct wall-parallel velocity fields at
yþ ¼ 15 and yþ ¼ 100 in a turbulent channel flow at Res ¼ 1000 with
fd ¼ 8. They report good resolution-enhancing results in terms of
instantaneous fields, turbulence statistics, and one-dimensional spectra,

similar to ours for the same fd. With respect to the spectra, their work
and ours coincide in identifying the small-scale structures as those
most difficult to recover. Because of the different Res in both stud-
ies, it is important to highlight that fd is a pixel ratio between the
high- and low-resolution fields, and it does not take into account
how many viscous lengths are contained in a single pixel. For a fair
comparison in turbulent flows, we propose the following normal-
ized downsampling factor:

~f d ¼ fd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxþ2 þ Dzþ2

p
; (3)

where Dxþ and Dzþ are the inner-scaled grid spacing in physical
space for x and z, respectively. Using Eq. (3) yields a normalized
downsampling factor ~f d � 105, while the work of Ref. 21 tackles a
problem with ~f d � 109, therefore showing that the comparison is
fair.

FIG. 2. Comparison of the wall-quantity fluctuating fields at Res ¼ 180, scaled with their corresponding standard deviation. Reference DNS is reported at the left panel, while
the six-row panels report the different fd cases, covering fd ¼ 4 (left), fd ¼ 8 (center), and fd ¼ 16 (right). Odd rows refer to low-resolution inputs, and even ones to the
SRGAN predictions. Top two-row panels report streamwise wall-shear stress, middle ones report spanwise wall-shear stress, and bottom ones refer to pressure fluctuations.

TABLE I. Mean-squared-error in the instantaneous wall fields scaled with their corre-
sponding standard deviations.

fd swx swz pw

4 0.0187 0.0244 0.0153
8 0.2240 0.3041 0.2741
16 0.6531 0.7732 0.7461
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IV. PREDICTION OF TURBULENT FLOW FIELDS FROM
COARSEWALL MEASUREMENTS

This section presents the reconstruction performance of wall-
parallel velocity fields from wall measurements. Reconstructions are per-
formed at four different wall-normal distances: yþ ¼ ½15; 30; 50; 100�,
considering four downsampling cases for the input wall measurements:
fd ¼ ½1; 4; 8; 16�. Note that fd ¼ 1 means that no information is lost at
the wall with respect to the DNS reference.

Figure 4 shows instantaneous fields of the streamwise velocity
fluctuations at the four wall-normal distances of interest in this study.
Predictions generated with SRGAN and FCN-POD networks are com-
pared to the DNS reference. Note that the FCN-POD predictions are
only reported for fd ¼ 1 case, and they are analogous to the results

presented in Ref. 26. Inspecting the fields, it can be seen that the best
results are obtained closer to the wall, with the lowest downsamplings.
When moving away from the wall or reducing the information pro-
vided by the wall, the small-scale fluctuations in the fields start to dis-
appear, and one of the networks recover the high-intensity fluctuating
regions of the flow. However, there is a clear performance difference
between FCN-POD and SRGAN predictions. While the loss of small-
scale fluctuations is clearly observable at yþ ¼ 30 for the FCN-POD
predictions, SRGAN is able to capture most of them at yþ ¼ 50. It is
not until yþ ¼ 100 that it is clearly observed that small-scale fluctua-
tions are not recovered by the SRGAN architecture. Nonetheless, the
results of fd ¼ 8 and fd ¼ 16 at yþ ¼ 15 are successful in capturing
most of the flow features present in the DNS reference, and the same
can be said for fd ¼ 8 at yþ ¼ 30. Since most of the flow-control tech-
niques actuate over this region,34–36 these results indicate that equally
distributed probes would be sufficient to feed flow information to
these control techniques, instead of using image-based acquisition sys-
tems, which are more expensive and difficult to implement.

A global view of the flow-reconstruction performance is provided
in terms of mean-squared-error. Figure 5 reports the evolution of the
error with respect to the wall-normal distance for the three flow quan-
tities, the four fd values, and the two reconstruction techniques. There
are two aspects to analyze: the performance difference between the
two networks and the evolution of the error with respect to fd. When
comparing the error evolution for both networks, it can be seen that
SRGAN outperforms FCN-POD predictions for all fd ¼ 4 and fd ¼ 8
cases, where the errors for the predictions generated with SRGAN are
better than when using the FCN-POD approach. However, for the fd
¼ 16 case, both errors collapse, and therefore the benefit of using
SRGAN disappears. This deterioration of the flow reconstruction can
be ascribed to the low amount of information contained by the coarse
wall measurements. In the case of fd ¼ 1, the wall data contain infor-
mation of the fluctuations with characteristic lengths as small as
�10‘� in the streamwise direction, while for fd ¼ 16, this increases up
to�160‘�. While fd ¼ 4 and fd ¼ 8 recover the small scales present in
the DNS reference, fd ¼ 16 does not succeed in this task. In any case, it
is important to remark the significant accuracy improvement of
SRGAN for fd ¼ 1 with respect to the FCN-PODmethod, especially in
the wall-normal and spanwise components. Although not presented
here, this improvement is noticeable also if compared with the FCN
method used in Ref. 26.

The second factor to analyze is the performance decay of the pre-
dictions when increasing fd. In a previous study,28 the effect of fd when
reconstructing the large-scale structures present in wall-parallel flow
fields from wall measurements on a turbulent channel flow of
Res ¼ 1000 was analyzed. The analyzed effect of fd ¼ ½1; 2; 4�
reported only a weak deterioration effect due to the increase in fd.
However, the results presented in Fig. 6 show a clear dependency
between fd and the mean-squared-error. Once again, the question
arises whether fd is adequate to characterize the downsampling effect
in wall turbulence. If we used the normalized downsampling factor
proposed in Eq. (3), fd ¼ 4 becomes ~f d � 44 for Ref. 28, while in our
case, it is ~f d � 52, increasing to 105 and 210 for fd values equal to
8 and 16, respectively. Therefore, it can be argued that in this work, we
are facing a more challenging wall-information loss. Furthermore, it
must be recalled that the flow scales to be predicted also affect the per-
formance of the method. Reference 28 only targeted the flow scales in

FIG. 3. Pre-multiplied two-dimensional power-spectral densities for (a) fluctuating
streamwise wall-shear-stress, (b) fluctuating spanwise wall-shear-stress, and (c) wall-
pressure fluctuations. The contour levels contain 10%, 50%, and 90% of the maximum
DNS power-spectral density. Shaded contours refer to the reference DNS data, while col-
ored lines denote fd ¼ 4 (blue), fd ¼ 8 (green), and fd ¼ 16 (yellow).
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the first ten POD modes, while this work targets the entire energy
spectra. The first ten PODmodes of Ref. 28 refer to the most energetic
structures present in the flow. Large coherent structures are more per-
sistent over time, with lives proportional to their scale.37 These charac-
teristic length and time scales make them less sensitive to the changes
in the resolution of the wall data. However, small-scale structures are
affected, both because they are smaller than the scales contained in the
coarse wall data and because the modulation effect of large scales38,39

is also hidden by the low-resolution data.
The pre-multiplied two-dimensional energy spectra of the flow

quantities at the four wall-normal locations discussed above are shown
in Fig. 7. As reported in Ref. 26, the amount of energy captured by the

predictions decreases moving farther from the wall. Moreover, it is
important to note that the FCN-POD method is able to recover scales
larger than the subdomain size, although a discontinuity in the spectra
can be observed at that wavelength, especially in the wall-normal and
spanwise components. With respect to the effect of using SRGAN as a
reconstruction method, the findings presented above are corroborated
by the spectra. The predictions generated with SRGAN recover a wider
range of energetic scales in both the streamwise and spanwise wave-
lengths for the three velocity fluctuations, even up to the case fd ¼ 8,
while for fd ¼ 16, both methods have been shown to provide the same
mean-squared error. Nonetheless, it is also important to mention that
for fd ¼ 16 at yþ ¼ 100, no energetic scales above the 10% of the DNS

FIG. 4. Contour map for the streamwise velocity fluctuation fields scaled with the corresponding standard deviation. From top to bottom, rows denote FCN-POD, reference
DNS, and SRGAN predictions with fd ¼ ½1; 4; 8; 16� for the wall information. From left to right, columns indicate yþ ¼ 15; yþ ¼ 30; yþ ¼ 50, and yþ ¼ 100.
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reference have been recovered in the wall-normal and spanwise spec-
tra. This also occurs in the spanwise fluctuation spectra at yþ ¼ 50,
but only for the predictions generated without SRGAN.

While Fig. 4 shows a large error for the extreme cases, i.e., those
reconstructions farther from the wall or with high fd values, a visual
inspection of Fig. 5 reveals that even in these cases, the SRGAN predic-
tions are able to capture the large-scale organization of the instanta-
neous flow field. Therefore, the large observed errors can be ascribed
to the attenuation of the velocity fluctuations, which makes it neces-
sary to define a metric that evaluates the error based on the scale wave-
lengths. Following Ref. 40, a spectral fractional error can be defined as

Rabðkx; y; kzÞ ¼
Rehða� a†Þðb� b†Þ�iðkx; y; kzÞ

Rehab�iðkx; y; kzÞ
; (4)

where kx and kz are the wave numbers in the streamwise and spanwise
directions, respectively, superscripts “�” and “†” refer to complex con-
jugate and estimated quantities, respectively, and Re denotes real part,
while a and b stand for either u, v, or w. Note that Eq. (4) is related to
the linear coherence spectrum.40–42 Figure 7 shows the iso-contours of
Rab ¼ 0.5 for each case. The reconstruction performance of fd ¼ 1 and
fd ¼ 4 in the viscous region, which covers entirely the wavelengths
above 10% energy content of the streamwise fluctuations, is particu-
larly remarkable. It can also be observed that the farther from the wall,
the fewer small scales are recovered in the reconstruction. A similar
behavior is observed when increasing the downsampling factor fd.

Since the SRGAN predictions in the most challenging configura-
tions exhibit some similarities with the filtered fields of the DNS refer-
ence, it is of interest to conduct the comparison. Low-pass filtering has
been applied to the DNS reference, where the cutoff lengths are
adjusted to retain those scale with Rab <0.5. Figure 8 shows this com-
parison for the case at yþ ¼ 50 with fd ¼ 8 at the wall input data.
While the SRGAN prediction does not yield small-scale details, it
exhibits a remarkable resemblance in terms of the streak patterns
when compared with the filtered DNS. Note that for the case of Fig. 8,
the cutoff wavelengths are set to kþx � 500 and kþz � 100. If the
mean-squared error displayed in Fig. 5 is computed with this filtered
reference, the error reduces from 0.603 to 0.317 for the case of Fig. 8.

V. SUMMARY AND CONCLUSIONS

The reconstruction of wall-parallel velocity fields from coarse
measurements at the wall in a wall-bounded turbulent flow has been
evaluated in this work, together with the resolution enhancement of
the wall measurements. For that purpose, SRGAN has been proposed
for both tasks. In the case of flow reconstruction from wall measure-
ments, this architecture has been compared with the FCN-POD
method proposed by Ref. 26. The resolution enhancement of wall
fields from their coarse counterparts has been carried out with down-
sampling factors fd ¼ ½4; 8; 16�. In the case of flow reconstruction,
the methods have been evaluated at the following wall-normal
locations: yþ ¼ ½15; 30; 50; 100� with wall downsampling factors
fd ¼ ½1; 4; 8; 16�. SRGAN is shown to provide accurate reconstruc-
tions for the case of resolution enhancement of wall fields at
fd ¼ ½4; 8�. In the most challenging case ðfd ¼ 16Þ, it can be observed
that small-scale contributions are not recovered in the reconstruction,
but the large-scale footprint of the flow at the wall is very well repre-
sented. With respect to the flow reconstruction with full resolution at
the wall, SRGAN is shown to provide a significant improvement with
respect to the baseline FCN-POD method.26 The effect of increasing fd
is also evaluated, showing a clear performance decrease unlike in the
work of Ref. 28, where only a weak effect is reported. This difference is
ascribed to two reasons: first, the range of scales targeted in Ref. 28
only covers the large wavelengths, while this study does it for the entire
spectrum. Small-scale structures have characteristic time and length
scales smaller than that of the filtering bandwidth from the coarse
measurements, thus losing relevant information for the reconstruction.
Second, fd is not an adequate parameter to compare different databases
of wall-bounded turbulent flows. To overcome this issue, we propose
to use ~f d , which takes into account the fraction of viscous length cov-
ered by a pixel. With this parameter, the effect of the downsampling is

FIG. 5. Mean-squared-error in the instantaneous fields of (a) streamwise, (b) wall-
normal, and (c) spanwise velocity fluctuations scaled with their corresponding stan-
dard deviations. Line styles refer to SRGAN (solid lines) and FCN-POD (dashed
lines) predictions. Colors and symbols denote fd ¼ 1 (black circles), fd ¼ 4 (blue
triangles), fd ¼ 8 (green triangles), and fd ¼ 16 (yellow squares).
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homogenized among the various works, showing a clear trend between
the results of Ref. 28 and the ones presented here. To the authors’
knowledge, this is the first study where DNNs are used to reconstruct
flow fields from coarse wall measurements in a turbulent flow, and

this approach has a great potential in the context of closed-loop con-
trol. In any case, it is observed that the accuracy improvements of
SRGAN start to decrease when increasing fd. The capability of SRGAN
to recover the large-scale structures present in the flow is also

FIG. 6. Pre-multiplied two-dimensional power-spectral densities for streamwise (first row), wall-normal (second row), and spanwise (third row) velocity fluctuations. From left to
right, columns refer to inner-scaled wall distance yþ equal to 15, 30, 50, and 100. The contour levels contain 10%, 50%, and 90% of the maximum DNS power-spectral density.
Shaded contours refer to the reference DNS data, while contour lines refer to SRGAN (solid lines) and FCN-POD (dashed lines) predictions. Colors denote fd ¼ 1 (black
squares), fd ¼ 4 (blue squares), fd ¼ 8 (green squares), and fd ¼ 16 (yellow squares).

FIG. 7. Fractional spectral error for streamwise (first row), wall-normal (second row), and spanwise (third row) velocity fluctuations. From left to right, columns refer to inner-
scaled wall-normal locations yþ equal to 15, 30, 50, and 100. The contour level corresponds to Rab ¼ 0.5. Contour lines refer to SRGAN (solid lines) and FCN-POD (dashed
lines) predictions. Colors denote fd ¼ 1 (black), fd ¼ 4 (blue), fd ¼ 8 (green), and fd ¼ 16 (yellow). Shaded contours refer to pre-multiplied two-dimensional power-spectral
densities for the reference DNS data.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 075121 (2021); doi: 10.1063/5.0058346 33, 075121-8

VC Author(s) 2021

https://scitation.org/journal/phf


evaluated by means of the fractional spectral error40 and assessment of
filtered instantaneous fields. It is shown that the SRGAN predictions
are in good agreement with large-scale patterns obtained from the fil-
tered DNS reference.

The present study has used high-resolution DNS data to train the
proposed GAN network. However, the computational cost and require-
ments for producing these data increase with Res, being impossible to
obtain for Reynolds numbers from real-life applications. Consequently,
it is advisable to look for alternatives that allow the use of the proposed
network in real-life scenarios. For instance, transfer learning could be
explored as in Ref. 26, to confirm that GANs are able to generalize from
one Res to another. Another option could be to rely on experimental
data obtained from those real-life scenarios. However, experimental
data might be contaminated by noise and have lower spatial and tempo-
ral resolutions than well-resolved DNS data. Therefore, future investiga-
tions should focus on how to combine different neural networks with
incomplete or noisy turbulent data.
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