3,063 research outputs found

    Numerical design of shockless airfoils

    Get PDF
    An attempt is made to indicate and briefly discuss only the most significant achievements of the research. The most successful contribution from the contract was the code for two dimensional analysis of airfoils in transonic flow

    Fatigue analysis-based numerical design of stamping tools made of cast iron

    Get PDF
    This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis of the tool. The result of this analysis is compared with the critical stress limit depending on the automotive model. The acceptance of this test allows calculating the fatigue lifetime of the critical zone by using the S–N curve of corresponding load ratio. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This method is applied for a cast iron EN-GJS-600-3. The stress-failure (S–N) curves for this material is determined at room temperature under push pull loading with different load ratios R0σmin/σmax0−2, R0−1 and R00.1. The effects of the foundry defects are determined by SEM observations of crack initiation sites. Their presence in tested specimens is associated with a reduction of fatigue lifetime by a factor of 2. However, the effect of the load ratio is more important

    The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    Get PDF
    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported

    NUMERICAL DESIGN OF STEERABLE GUIDEWIRES

    Get PDF
    Biomedical devices are an integral part of the medical industry nowadays. With the increase in cases of heart disease, catheterization procedures are becoming more frequent. Small-scale actuators are needed for the guidance of small-scale catheters and guidewires to remote targets in the human body. Numerical modelling is needed to guide the experiments in developing such steerable devices and to optimize their design. Here, we designed small-scale steerable guidewires by first developing bending actuators and then assembling them with guidewires. The actuators use materials with strain response to electric potential in a very low voltage range that is not harmful to the human body. Our work examined the layered strip configuration for the structure of actuators and identified trends to maximize the bending deformations. Using the commercial software Abaqus, we developed a finite element model based on Piezoelectric actuation to simulate various combinations of materials and geometries and to optimize the design of the actuator and the steerable guidewires. We also developed an analytical model for the actuators and showed that the simulation results are in agreement with the analytical model. Parameters like thickness, length, and different geometrical combinations and their effect on bending were compared. This numerical model can be customized for different materials that can be used for designing these actuators in future

    Numerical design of streamlined tunnel walls for a two-dimensional transonic test

    Get PDF
    An analytical procedure is discussed for designing wall shapes for streamlined, nonporous, two-dimensional, transonic wind tunnels. It is based upon currently available 2-D inviscid transonic and boundary layer analysis computer programs. Predicted wall shapes are compared with experimental data obtained from the NASA Langley 6 by 19 inch Transonic Tunnel where the slotted walls were replaced by flexible nonporous walls. Comparisons are presented for the empty tunnel operating at a Mach number of 0.9 and for a supercritical test of an NACA 0012 airfoil at zero lift. Satisfactory agreement is obtained between the analytically and experimentally determined wall shapes

    Prototype system for supporting the incremental modelling of vague geometric configurations

    Get PDF
    In this paper the need for Intelligent Computer Aided Design (Int.CAD) to jointly support design and learning assistance is introduced. The paper focuses on presenting and exploring the possibility of realizing learning assistance in Int.CAD by introducing a new concept called Shared Learning. Shared Learning is proposed to empower CAD tools with more useful learning capabilities than that currently available and thereby provide a stronger interaction of learning between a designer and a computer. Controlled computational learning is proposed as a means whereby the Shared Learning concept can be realized. The viability of this new concept is explored by using a system called PERSPECT. PERSPECT is a preliminary numerical design tool aimed at supporting the effective utilization of numerical experiential knowledge in design. After a detailed discussion of PERSPECT's numerical design support, the paper presents the results of an evaluation that focuses on PERSPECT's implementation of controlled computational learning and ability to support a designer's need to learn. The paper then discusses PERSPECT's potential as a tool for supporting the Shared Learning concept by explaining how a designer and PERSPECT can jointly learn. There is still much work to be done before the full potential of Shared Learning can be realized. However, the authors do believe that the concept of Shared Learning may hold the key to truly empowering learning in Int.CAD
    • …
    corecore