56,107 research outputs found

    Barycentric Interpolation Based on Equilibrium Potential

    Full text link
    A novel barycentric interpolation algorithm with a specific exponential convergence rate is designed for analytic functions defined on the complex plane, with singularities located near the interpolation region, where the region is compact and can be disconnected or multiconnected. The core of the method is the efficient computation of the interpolation nodes and poles using discrete distributions that approximate the equilibrium logarithmic potential, achieved by solving a Symm's integral equation. It takes different strategies to distribute the poles for isolated singularities and branch points, respectively. In particular, if poles are not considered, it derives a polynomial interpolation with exponential convergence. Numerical experiments illustrate the superior performance of the proposed method

    The exponentially convergent trapezoidal rule

    Get PDF
    It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators

    Analytic Evaluation of Four-Particle Integrals with Complex Parameters

    Full text link
    The method for analytic evaluation of four-particle integrals, proposed by Fromm and Hill, is generalized to include complex exponential parameters. An original procedure of numerical branch tracking for multiple valued functions is developed. It allows high precision variational solution of the Coulomb four-body problem in a basis of exponential-trigonometric functions of interparticle separations. Numerical results demonstrate high efficiency and versatility of the new method.Comment: 13 pages, 4 figure

    Computing the Hilbert transform and its inverse

    Get PDF
    We construct a new method for approximating Hilbert transforms and their inverse throughout the complex plane. Both problems can be formulated as Riemann-Hilbert problems via Plemelj's lemma. Using this framework, we re-derive existing approaches for computing Hilbert transforms over the real line and unit interval, with the added benefit that we can compute the Hilbert transform in the complex plane. We then demonstrate the power of this approach by generalizing to the half line. Combining two half lines, we can compute the Hilbert transform of a more general class of functions on the real line than is possible with existing methods

    Asymptotic expansions and fast computation of oscillatory Hilbert transforms

    Full text link
    In this paper, we study the asymptotics and fast computation of the one-sided oscillatory Hilbert transforms of the form H+(f(t)eiωt)(x)=−int0∞eiωtf(t)t−xdt,ω>0,x≥0,H^{+}(f(t)e^{i\omega t})(x)=-int_{0}^{\infty}e^{i\omega t}\frac{f(t)}{t-x}dt,\qquad \omega>0,\qquad x\geq 0, where the bar indicates the Cauchy principal value and ff is a real-valued function with analytic continuation in the first quadrant, except possibly a branch point of algebraic type at the origin. When x=0x=0, the integral is interpreted as a Hadamard finite-part integral, provided it is divergent. Asymptotic expansions in inverse powers of ω\omega are derived for each fixed x≥0x\geq 0, which clarify the large ω\omega behavior of this transform. We then present efficient and affordable approaches for numerical evaluation of such oscillatory transforms. Depending on the position of xx, we classify our discussion into three regimes, namely, x=O(1)x=\mathcal{O}(1) or x≫1x\gg1, 0<x≪10<x\ll 1 and x=0x=0. Numerical experiments show that the convergence of the proposed methods greatly improve when the frequency ω\omega increases. Some extensions to oscillatory Hilbert transforms with Bessel oscillators are briefly discussed as well.Comment: 32 pages, 6 figures, 4 table

    A numerical method for oscillatory integrals with coalescing saddle points

    Full text link
    The value of a highly oscillatory integral is typically determined asymptotically by the behaviour of the integrand near a small number of critical points. These include the endpoints of the integration domain and the so-called stationary points or saddle points -- roots of the derivative of the phase of the integrand -- where the integrand is locally non-oscillatory. Modern methods for highly oscillatory quadrature exhibit numerical issues when two such saddle points coalesce. On the other hand, integrals with coalescing saddle points are a classical topic in asymptotic analysis, where they give rise to uniform asymptotic expansions in terms of the Airy function. In this paper we construct Gaussian quadrature rules that remain uniformly accurate when two saddle points coalesce. These rules are based on orthogonal polynomials in the complex plane. We analyze these polynomials, prove their existence for even degrees, and describe an accurate and efficient numerical scheme for the evaluation of oscillatory integrals with coalescing saddle points

    Fast and accurate computation of the logarithmic capacity of compact sets

    Full text link
    We present a numerical method for computing the logarithmic capacity of compact subsets of C\mathbb{C}, which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemniscatic domains and, computationally, on the solution of a boundary integral equation with the Neumann kernel. Our numerical examples indicate that the method is fast and accurate. We apply it to give an estimate of the logarithmic capacity of the Cantor middle third set and generalizations of it
    • …
    corecore