369 research outputs found

    Extending BIM for air quality monitoring

    Get PDF
    As we spend more than 90% of our time inside buildings, indoor environmental quality is a major concern for healthy living. Recent studies show that almost 80% of people in European countries and the United States suffer from SBS (Sick Building Syndrome), which affects physical health, productivity and psychological well-being. In this context, environmental quality monitoring provides stakeholders with crucial information about indoor living conditions, thus facilitating building management along its lifecycle, from design, construction and commissioning to usage, maintenance and end-of-life. However, currently available modelling tools for building management remain limited to static models and lack integration capacities to efficiently exploit environmental quality monitoring data. In order to overcome these limitations, we designed and implemented a generic software architecture that relies on accessible Building Information Model (BIM) attributes to add a dynamic layer that integrates environmental quality data coming from deployed sensors. Merging sensor data with BIM allows creation of a digital twin for the monitored building where live information about environmental quality enables evaluation through numerical simulation. Our solution allows accessing and displaying live sensor data, thus providing advanced functionality to the end-user and other systems in the building. In order to preserve genericity and separation of concerns, our solution stores sensor data in a separate database available through an application programming interface (API), which decouples BIM models from sensor data. Our proof-of-concept experiments were conducted with a cultural heritage building located in Bled, Slovenia. We demonstrated that it is possible to display live information regarding environmental quality (temperature, relative humidity, CO2, particle matter, light) using Revit as an example, thus enabling end-users to follow the conditions of their living environment and take appropriate measures to improve its quality.Pages 244-250

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Experimental and numerical investigation of restrained shrinkage of concrete

    Get PDF
    To promote the understanding of shrinkage related behaviour of concrete used for tunnel linings the experimental and theoretical investigation including numerical and analytical approach was performed on ring-shaped specimens. Overall one analytical (an.) and two numerical models, namely (i) and (ii) were also developed. Models (an.) and (i) considered the restraining steel ring to be rigid, thus not exhibiting any deformation. Numerical model (ii) considered the steel ring to be deformable. The experimental set-up consisted of a large concrete ring with an inner diameter of 120 cm, an outer diameter of 160cm and 20 cm in height. The restraining steel ring was 5.5 cm thick. Two concrete rings were made, namely R1 with a low compressive strength of ~26MPa and the other, R2, with medium compressive strength of ~40 MPa. The strain was measured in the hoop direction on the inner circumference of the steel ring and on the outer circumference of the concrete ring. Concrete rings were subjected to circumferential drying. Numerical model (ii) predicted critical time to the formation of the first crack to be between 13 and 14 days. The experimentally determined critical time is found to be 11 to 13 days with cracks gradually opening over several days. This was indicated by changes in measured concrete and steel strain. Modelled concrete strain just before cracking was between -20 and -30 % 10-6 m m-1 however, measured concrete strain was ~150 % 10-6 m m-1. Modelled steel strain was between -30 and -40 % 10-6 m m-1 while measured steel strain was between -10 and 20 % 10-6 m m-1. These discrepancies, in particular the positive steel strain obtained in experiments, require further investigation and improvements of the experimental set-up

    First experiences in the development of slovenian sustainable building indicators

    Get PDF
    The construction sector is recognised as having a key impact on the life on Earth. Consequently, the EU has set clear environmental goals for 2030 and 2050, and is developing policies and tools to achieve them. One of the tools for achieving these goals is to establish a system for the evaluation of the environmental performance of buildings, with the priorities of reducing GHG emissions, saving with natural resources and preserving the environment, while maintaining sustainable development and ensuring a healthy living environment. Slovenia has joined in achieving this goal with a study on the state-of-play, commissioned a few years ago by the Ministry of the Environment and Spatial Planning, as the starting point for the development of sustainable building indicators (SBIs). The research, which included an analysis of the Slovenian legislation, commercial certification systems for sustainable buildings and development in the field of green public procurement, exposed complementary but rather different goals and views. It further showed that the Level(s), which provides a common EU approach in assessing the environmental performance of buildings, seems to be the most appropriate framework and the basis for the development of the Slovenian system of SBIs. The development of the Slovenian SBIs is currently underway within the project LIFE IP CARE4CLIMATE with the preparation of guidelines, data sources and procedures for determining the value of individual indicators for the assessment of buildings. Initial research with key construction stakeholders has shown that the solution must be linked to the national building legislation, computational methods and software tools, and also to the established planning procedures. The analyses have also shown that, parallel to developing such a system, it is essential to provide a functional supporting environment and a specific, purposely designed information platform to connect the stakeholders with the developers of the sustainable building indicators system

    Use of steel slag for the synthesis of belite-sulfoaluminate clinker

    Get PDF
    Belite-sulfoaluminate (BCSA) cements are low-carbon mineral binders, which require low energy consumption and allow the incorporation of various secondary raw materials in the clinker raw meal. In this study two types of unprocessed steel slags, coming from stainless steel production, were incorporated in the BCSA clinkers. The clinker phase composition, clinker reactivity, and the compressive strength of the cement were studied to evaluate the possible use of the slag in BCSA clinkers. The cement clinkers were synthesized by using natural raw materials, white titanogypsum, mill scale, as well as two different steel slags: (i) EAF S slag, which is a by-product of melting the recycled steel scrap in an electric arc furnace, and (ii) la dle slag as a by-product of the processes of secondary metallurgy, in various quantities. Raw mixtures with two different targeted phase compositions varying in belite, calcium sulfoaluminate and ferrite phases were sintered at 1250 °C. Clinker phases were determined by Rietveld quantitative phase analysis, while their distribution, morphology and incorporation of foreign ions in the phases were studied by SEM/EDS analysis. The clinker reactivity was determined by isothermal calorimetry. BCSA cements were prepared by adding titanogypsum. The compressive strength of the cement pastes was determined after 7 days of hydration. The presence of a predicted major clinker phases was confirmed by Rietveld analysis, however periclase was also detected. Microscopy revealed subhedral grains of belite and euhedral grains of calcium sulfoaluminate phases, while ferrite occurred as an interstitial phase. The results showed differences in the microstructure and reactivity of the clinker and cement, which can be attributed to varying amounts of ettringite due to different slag type

    CoMS

    Get PDF
    Zbornik pokriva številne, predvsem tehnične teme, ki so pomembne za trajnostni razvoj gradbenega sektorja, kot ključnega dejavnika pri doseganju ciljev EU za obvladovanje podnebnih sprememb in za prehod v brezogljično družbo. Vsebinsko naslavlja inovacije v gradbenih materialih in tehnologijah, vključno s komponentami za zdravo in udobno bivanje, ter interakcije med materiali in okoljem. Poleg energetske učinkovitosti stavb je v njem zajeto področje širšega razumevanja trajnostnega načrtovanja, gradnje in vzdrževanja stavb ter monitoring, ocenjevanje in modeliranje stavb. Vključuje pa tudi vsebine, ki se nanašajo na krožno gospodarstvo, kot je recikliranje materialov in komponent ter koncepti sanacij stavb, ter na digitalizacijo in avtomatizacijo področja

    An exhaustive research and analysis on seismic performance of prefabricated concrete shear wall structure

    Get PDF
    In order to accelerate the process of building industrialization, improve the overall stability and construction quality of the building. In this paper, a bolted connection method is designed to study the seismic performance of the composite concrete shear wall specimens with horizontal split joints from the aspects of bearing capacity, ductility, energy dissipation, deformation capacity and failure mode. The test results show that the bolted concrete shear wall is feasible and the connectors can effectively connect the upper and lower precast shear walls to form a whole with certain lateral stiffness. The energy dissipation capacity of the specimens is similar to that of other prefabricated concrete shear wall structures with “self-reduction”. The displacement Angle is greater than 1/120 of the limit value of the displacement Angle between elastic-plastic layers under the action of large earthquakes, and the specimen has good deformation capacity. The energy dissipation capacity of the structure from dynamics perspective reveals that smaller capacity of the specimen by providing energy dissipation factor E= 0.24 and equivalent viscous damping coefficient of 0.038

    Using Low-cost IoT-based inclinometers for damage detection of a Bridge model

    Get PDF
    Nowadays, researchers are paying close attention to using inclinometers for Structural Health Monitoring (SHM) applications. Moreover, the applications based on using inclinometers can detect the magnitude and location of bridge pathologies. However, as these applications are based on expensive commercial inclinometers, their use is typically exclusive to the SHM of structures with a high monitoring budget. There is a gap in the literature with the development and validation of low-cost accurate angular-meters for decreasing the monitoring cost of inclinometer-based damage detection applications. This work aims to develop low-cost IoT-based inclinometers for detecting damage in bridge structures. The Low-cost Adaptable Reliable Angle-meter (LARA) is a novel inclinometer that accurately measures an induced inclination by combining the measurements of five gyroscopes and five accelerometers. The accuracy, resolution, Allan variance, and standard deviation of LARA are examined through laboratory experiments and are compared with those obtained by numerical slope calculations and a commercial inclinometer (HI-INC). For further experimental validation, a robotic vehicle model is designed and developed to simulate a moving load over a bridge model. The vehicle model integrates IoT technology and can be utilized in different damage detection experiments. The outcomes of a load test experiment using a simple beam model demonstrate the high accuracy (0.003 degrees) of LARA measurements. LARA may be used for structural damage identification and location in bridges utilizing inclinometers because of its low cost and high accuracy

    Structural Integrity and Failure

    Get PDF
    Structural integrity and failure assessment have been considered by many fields of engineers as it is a multi-disciplinary concept. The assessment procedure vitally ensures that structural elements will remain functional throughout their service lives. Structural failure refers to the loss of structural integrity by means of loss at the component- or system-level elements. The main concern of integrity assessment is that a structural failure may be avoided at the service level by designing the structure to withstand its designated loads. Hence, for satisfactory structural performance, structural safety, failure, and interaction between them should be considered throughout the design and analysis stages. This book is a collection of chapters that provide the researcher with a comprehensive perspective on structural integrity and its sub-disciplines

    Advanced Sensing, Fault Diagnostics, and Structural Health Management

    Get PDF
    Advanced sensing, fault diagnosis, and structural health management are important parts of the maintenance strategy of modern industries. With the advancement of science and technology, modern structural and mechanical systems are becoming more and more complex. Due to the continuous nature of operation and utilization, modern systems are heavily susceptible to faults. Hence, the operational reliability and safety of the systems can be greatly enhanced by using the multifaced strategy of designing novel sensing technologies and advanced intelligent algorithms and constructing modern data acquisition systems and structural health monitoring techniques. As a result, this research domain has been receiving a significant amount of attention from researchers in recent years. Furthermore, the research findings have been successfully applied in a wide range of fields such as aerospace, manufacturing, transportation and processes
    corecore