22 research outputs found

    Numerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansions

    Full text link
    The small dispersion limit of solutions to the Camassa-Holm (CH) equation is characterized by the appearance of a zone of rapid modulated oscillations. An asymptotic description of these oscillations is given, for short times, by the one-phase solution to the CH equation, where the branch points of the corresponding elliptic curve depend on the physical coordinates via the Whitham equations. We present a conjecture for the phase of the asymptotic solution. A numerical study of this limit for smooth hump-like initial data provides strong evidence for the validity of this conjecture. We present a quantitative numerical comparison between the CH and the asymptotic solution. The dependence on the small dispersion parameter ϵ\epsilon is studied in the interior and at the boundaries of the Whitham zone. In the interior of the zone, the difference between CH and asymptotic solution is of the order ϵ\epsilon, at the trailing edge of the order ϵ\sqrt{\epsilon} and at the leading edge of the order ϵ1/3\epsilon^{1/3}. For the latter we present a multiscale expansion which describes the amplitude of the oscillations in terms of the Hastings-McLeod solution of the Painlev\'e II equation. We show numerically that this multiscale solution provides an enhanced asymptotic description near the leading edge.Comment: 25 pages, 15 figure

    Numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions

    Get PDF
    We study numerically the small dispersion limit for the Korteweg-de Vries (KdV) equation ut+6uux+ϵ2uxxx=0u_t+6uu_x+\epsilon^{2}u_{xxx}=0 for ϵ1\epsilon\ll1 and give a quantitative comparison of the numerical solution with various asymptotic formulae for small ϵ\epsilon in the whole (x,t)(x,t)-plane. The matching of the asymptotic solutions is studied numerically

    Numerical study of fractional Camassa-Holm equations

    Full text link
    A numerical study of fractional Camassa-Holm equations is presented. Smooth solitary waves are constructed numerically. Their stability is studied as well as the long time behavior of solutions for general localised initial data from the Schwartz class of rapidly decreasing functions. The appearence of dispersive shock waves is explored

    Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws

    Get PDF
    We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory traveling waves that approximate shock waves. The zero-diffusion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A richer set of wave solutions can be found when the flux is non-convex. This review compares the structure of solutions of Riemann problems for a conservation law with non-convex, cubic flux regularized by two different mechanisms: 1) dispersion in the modified Korteweg--de Vries (mKdV) equation; and 2) a combination of diffusion and dispersion in the mKdV-Burgers equation. In the first case, the possible dynamics involve two qualitatively different types of DSWs, rarefaction waves (RWs) and kinks (monotonic fronts). In the second case, in addition to RWs, there are traveling wave solutions approximating both classical (Lax) and non-classical (undercompressive) shock waves. Despite the singular nature of the zero-diffusion limit and rather differing analytical approaches employed in the descriptions of dispersive and diffusive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In contrast to the case of convex flux, the mKdVB to mKdV mapping is not one-to-one. The mKdV kink solution is identified as an undercompressive DSW. Other prominent features, such as shock-rarefactions, also find their purely dispersive counterparts involving special contact DSWs, which exhibit features analogous to contact discontinuities. This review describes an important link between two major areas of applied mathematics, hyperbolic conservation laws and nonlinear dispersive waves.Comment: Revision from v2; 57 pages, 19 figure
    corecore