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NUMERICAL STUDY OF THE SMALL DISPERSION LIMIT OF THE

KORTEWEG-DE VRIES EQUATION AND ASYMPTOTIC SOLUTIONS

T. GRAVA AND C. KLEIN

Abstract. We study numerically the small dispersion limit for the Korteweg-de Vries (KdV)
equation ut + 6uux + ε2uxxx = 0 for ε � 1 and give a quantitative comparison of the numerical
solution with various asymptotic formulae for small ε in the whole (x, t)-plane. The matching of
the asymptotic solutions is studied numerically.

1. Introduction

The behavior of solutions to Hamiltonian perturbations of hyperbolic and elliptic systems has
seen a renewed interest in [28, 29, 30]. Specific integrable cases like the solution to the small
dispersion limit of the Korteweg-de Vries (KdV) equation or the semiclassical limit of the nonlinear
Schrödinger equation have been studied in detail in some part of the (x, t) plane in the seminal
papers [50, 26, 47]. However some detail description of the solution in several critical regions of
the (x, t) plane can be given for non-integrable Hamiltonian perturbations of hyperbolic or elliptic
systems. It has been conjectured by Dubrovin and Dubrovin et al. [28, 30, 29] that solutions can
be approximated in one of the critical regimes by special solutions to the Painlevé I equation and
its hierarchy (see also [3]). In particular the universal nature of the critical behavior is remarkable.
The conjecture has been rigorously proved in one specific case, that is for the Cauchy problem for
the KdV equation with analytic initial data. Further critical behaviours have been observed in
solutions to Hamiltonian perturbations of hyperbolic and elliptic equations (see e.g. [4, 11, 1]). In
particular in the Hamiltonian perturbations of hyperbolic systems, two other critical regimes have
been observed: one of them is related to the second Painlevé equation, while the other is solitonic
because the local asymptotic behaviour is described by a train of solitons. The existence of such
critical regimes has been rigorously proved for the Cauchy problem for the KdV equation. A review
of these results as well as a new and improved numerical comparison of all asymptotic formulae
with the numerical solution of KdV, is the subject of the present work.

We consider the Cauchy problem for the KdV equation with small dispersion

(1.1) ut + 6uux + ε2uxxx = 0, u(x, t = 0, ε) = u0(x), ε > 0, x ∈ R, t ∈ R+;

u0(x) is real analytic negative initial data with sufficient decay at infinity and with a single negative
hump (for detailed definition see [16]). For a much wider class of initial data than the one we
consider, it is known that the KdV solution exists for all positive times t (see for example [23]).
Up to a certain time tc the solution u(x, t, ε) as ε→ 0 can be approximated [50] by the solution to
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the Cauchy problem for the (dispersionless) Hopf equation

(1.2) ut + 6uux = 0, u(x, 0) = u0(x), t > 0,

which can be solved by using the method of characteristics in the form

(1.3) u(x, t) = u0(ξ), x = 6tu0(ξ) + ξ.

At time

tc =
1

maxξ∈R[−6u′0(ξ)]
,

the Hopf equation reaches a point (xc, tc) of gradient catastrophe where the derivative of the Hopf
solution blows up. Recently, it has been proved [51] that for initial data u0(x) in the Sobolev space
Hs(R), s > 3

4 , and for a larger class of equations than KdV

(1.4) u(x, t, ε) = u(x, t) +O(ε2), t < tc,

where u(x, t) is the solution (1.3). The sub-leading term in the above expansion is determined
explicitly. For t > tc, the Hopf solution (1.3) is multi-valued. However, the KdV solution is well-
defined for all positive t and ε > 0: the dispersive term ε2uxxx regularizes the gradient catastrophe.
For t slightly smaller than tc, the KdV solution u(x, t, ε) starts to oscillate. For t > tc a zone of rapid
modulated oscillations develops [43, 50]. In the (x, t)-plane, the oscillations take place in a cusp-
shaped region (which depends on the initial data) as illustrated in Fig. 1. These oscillations in the
limit ε→ 0 are confined to a certain interval [x−(t), x+(t)], see Figure 2. The interval [x−(t), x+(t)]
is usually called Whitham zone because the oscillations are described inside this interval through
the Whtiham equations [60] (see below (2.7)). Furthermore the functions x+(t) and x−(t) are
determined by the confluent form of the Whitham equations (see subsections 2.3, 2.4).

Inside this cusp-shaped region, the exact one-phase solution to the KdV equation in terms of
elliptic functions gives an asymptotic description of the oscillations, but on an elliptic surface where
the branch points depend on x and t via the Whitham modulation equations as was proved by Lax
and Levermore and Venakides [50, 59]. This averaging procedure works well inside the Whitham
zone, but has to be amended near the boundaries of the zone as was found numerically in [39].
Near the point of gradient catastrophe (xc, tc) , Dubrovin [28] conjectured that for a large class of
equations containing KdV, the corresponding solution is asymptotically given in terms of a special
solution of the second equation in the Painlevé I hierarchy that we will call P2

I equation. This was
tested numerically in [41] and proven for KdV in [15]. Near the leading edge a multiscale expansion
was presented for the oscillations in terms of a particular solution of the Painlevé II equation in
[40]. The validity of such an expansion has been proved rigorously in [16]. Near the trailing edge
[17] gave an asymptotic solution in terms of a series of pulses of the shape of KdV solitons (see
Fig 2).

It is remarkable that the KdV solutions can be approximated by Painlevé equations in the critical
regimes described above. Those Painlevé equations have appeared in many branches of pure and
applied mathematics during the past decades, for an overview we refer to [35].

The universal critical behaviour of KdV solutions should be seen in relation to the known univer-
sality results in random matrix theory. For large unitary random matrix ensembles, local eigenvalue
statistics turn out to be, to some extent, independent of the choice of the ensemble and indepen-
dent of the reference point chosen [25, 27]. Critical break-up times occur when the eigenvalues
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Figure 1. Solution to the KdV equation for the initial data u0(x) = −sech2x and
ε = 10−1.

move from a one-cut regime to a multi-cut regime. These transitions take place in the presence of
singular points, of which three different types are distinguished [27]. Such singular points have the
same singularity type which appears in the small dispersion limit of KdV. Singular interior points
[34, 32, 6, 19, 20] show remarkable similarities with the leading edge of the oscillatory region for
the KdV equation. The second possibility, which is related to the trailing edge for KdV, is that an
interval in the spectrum shrinks and disappears afterwards. This case is also referred to as birth of
a cut in unitary random matrix ensembles, [5, 14, 52, 33]. The point of gradient catastrophe, i.e.
the break-up point where the oscillations set in is comparable to a singular edge point in unitary
random matrix ensembles. It was conjectured by Bowick and Brézin, and by Brézin, Marinari, and
Parisi [9, 10] that local eigenvalue statistics in this regime should be given in terms of the Painlevé I
hierarchy. In [22], it was proven that indeed double scaling limits of the local eigenvalue correlation
kernel are given in terms of the Lax pair for the P 2

I equation.
In this paper we implement numerically all known asymptotic approximations to the solution

u(x, t, ε) of the KdV equation as ε→ 0 and test them quantitatively for a concrete example. With
respect to previous works, the numerical methods are overall improved which allows to study a wider
range of values for the small dispersion parameter ε. The asymptotic formulae for the trailing edge
are implemented for the first time as well as the terms of order ε4/7 at the breakup point. We also
address numerically the matching of different approximations.

The paper is organized as follows: In sect. 2 we collect various asymptotic formulae for KdV
solutions in the small dispersion limit. In sect. 3 we give a brief overview of the used numerical
methods. In sect. 4 we study numerically the asymptotic description given by the one-phase KdV
and the Hopf solution. At the leading edge, the multiscale solution in terms of a special solution
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Figure 2. Whitham zone for the KdV equation for the initial data u0(x) =
−sech2x. The shadow regions indicate the various asymptotic approximations in
a neighbourhood of the Whitham zone.

to the Painlevé II equation is studied in sect. 5. In sect. 6 the same is done for the asymptotic
solution at the trailing edge, and in sect. 7 for the point of gradient catastrophe. In sect. 8 we add
some concluding remarks and an outlook on the connection formulae for the various asymptotic
regimes.

2. Asymptotic descriptions of the small dispersion limit

In this section we summarize various asymptotic descriptions of the dispersive shocks which will
be implemented numerically in the following.

2.1. One-phase solution in the Whitham zone. Inside the cusp-shaped region in Fig. 2 for t
slightly bigger than tc, the KdV solution u(x, t, ε) can be approximated for small ε, by the exact
1-phase solution of KdV, where the branch points of the elliptic surface depends on x and t through
Whitham equations. The one-phase solution of KdV can be written in terms of the Jacobi elliptic
theta function and the complete elliptic integrals of the first and second kind E(s) and K(s)
[50, 26, 43]:

(2.1) u(x, t, ε) ' β1 + β2 + β3 + 2α+ 2ε2
∂2

∂x2
log ϑ(Ω(x, t); T ),



SMALL DISPERSION LIMIT OF KDV 5

where β1 > β2 > β3, Ω, α, and T have the form

Ω(x, t) =

√
β1 − β3

2εK(s)
[x− 2t(β1 + β2 + β3)− q],(2.2)

α(s) = −β1 + (β1 − β3)
E(s)

K(s)
, T = i

K ′(s)

K(s)
, s2 =

β2 − β3
β1 − β3

.(2.3)

Note that K ′(s) = K(
√

1− s2), and ϑ is defined by the Fourier series

ϑ(z; T ) =
∑
n∈Z

eπin
2T +2πinz.

The formula for q in the phase Ω in (2.2) is equal to [40, 26]

(2.4) q(β1, β2, β3) =
1

2
√

2π

∫ 1

−1

∫ 1

−1
dµdν

fL(1+µ2 (1+ν2 β1 + 1−ν
2 β2) + 1−µ

2 β3)√
1− µ

√
1− ν2

,

where fL(y) is the inverse function of the decreasing part of the initial data u0. The formula (2.4)
for q is valid as long as β3 does not reach the minimum value of the initial data u0. When β3
reaches and goes beyond the negative hump it is also necessary to take into account the increasing
part of the initial data fR, [39], [56]

(2.5) q(β1, β2, β3) =
1

2π

∫ β1

β2

dλ

(∫ −1
β3

dξfR(ξ)√
λ− ξ +

∫ λ

−1

dξfL(ξ)√
λ− ξ

)
√

(β1 − λ)(λ− β2)(λ− β3)
.

Remark 2.1. In the formula (2.1) the term β1 +β2 +β3 +2α is the weak limit of u(x, t, ε) as ε→ 0
[50] and the term containing the θ-function describes the oscillations [26, 59]. The error term in
the asymptotic expansion (2.1) should be of order O(ε).

Formula (2.1) can be written also in terms of the Jacobi elliptic function dn in the form

(2.6) u(x, t, ε) ' β2 + β3 − β1 + 2(β1 − β3)dn2(2K(s)Ω +K(s)).

For constant values of β1 > β2 > β3, the right hand side of (2.6) is an exact solution of KdV.
However in the description of the leading order asymptotics of u(x, t, ε) as ε → 0, the numbers
β1 > β2 > β3 depend on x and t and evolve according to the Whitham equations [60]

(2.7)
∂

∂t
βi + vi

∂

∂x
βi = 0, vi = 4

∏
k 6=i(βi − βk)
βi + α

+ 2(β1 + β2 + β3), i = 1, 2, 3,

with α as in (2.3).
The Whitham equations (2.7) can be integrated through the so-called hodograph transform,

which generalizes the method of characteristics, and which gives the solution in the implicit form
[58]

(2.8) x = vit+ wi, i = 1, 2, 3,

where the vi are defined in (2.7), and where wi = wi(β1, β2, β3) for i = 1, 2, 3 is obtained from an
algebro-geometric procedure by the formula [55]

(2.9) wi =
1

2

(
vi − 2

3∑
k=1

βk

)
∂q

∂βi
+ q, i = 1, 2, 3,
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with q defined in (2.4) or (2.5). Solvability of (2.8) for initial data with a single hump was proved
in [56].

Near the boundary of the oscillatory cusp-shaped region, neither the Hopf solution (1.3) nor the
one-phase solution (2.1) gives a satisfactory description of the KdV solution u(x, t, ε) as ε → 0.
Three different transitional regimes can be distinguished: (1) the cusp point where the gradient
catastrophe for the Hopf equation takes place and where β1 = β2 = β3 = uc, (2) the leading edge of
the oscillatory zone where β2 = β3, and (3) the trailing edge of the oscillatory zone where β1 = β2.
We will illustrate in the next subsections that in the above three cases

u(x, t, ε) =

 u(xc, tc) +O(ε
2
7 ), near the point of gradient catastrophe (xc, tc) ,

u(x−(t), t) +O(ε
1
3 ), near the leading edge,

u(x+(t), t) +O(1), near the trailing edge,

where u(x, t) is the solution of the Hopf equation and x±(t) are the boundaries of the Whitham
zone. The sub-leading terms are described respectively by a P2

I transcendent, a PII transcendent,
and a train of solitons. Clearly the above asymptotic expansions are not uniform in ε. Connections
formula need to be developed.

2.2. Point of gradient catastrophe. It was conjectured in [28] and proved afterwards in [15]
that the KdV solution u(x, t, ε) as ε→ 0 near the point of gradient catastrophe (xc, tc) for the Hopf
solution (1.3), is given in terms of a distinguished Painlevé transcendent, namely a special smooth
solution U(X,T ) to the fourth order ODE

(2.10) X = 6T U −
[
U3 +

1

2
U2
X + U UXX +

1

10
UXXXX

]
.

This ODE is the second member of the Painlevé I hierarchy, and we refer to it as the P2
I equation.

The relevant solution is real and has the asymptotic behavior

(2.11) U(X,T ) = ∓(|X|)1/3 ∓ 2T |X|−1/3 +O(|X|−1), as X → ±∞,

for any fixed T ∈ R, and has no poles for real values of X and T [21, 28]. It is remarkable that
U(X,T ) is an exact solution to the KdV equation

(2.12) UT + 6UUX + UXXX = 0.

In a double scaling limit where ε → 0 and simultaneously x and t approach the point and the
time of gradient catastrophe xc and tc in such a way that the limits

lim
ε→ 0

x− 6uct→ xc − 6uctc

[
x− xc − 6uc(t− tc)

ε
6
7

]
, lim

ε→ 0
t→ tc

[
(t− tc)
ε
4
7

]
, uc = u(xc, tc)

exist and are bounded, the KdV solution has an expansion of the following form [15]. Let

(2.13) X =
x− xc − 6uc(t− tc)

(k)1/7ε
6
7

, T =
(t− tc)
(k)3/7ε

4
7

with

(2.14) k = −f ′′′L (uc)/6
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and fL(u) the inverse of the decreasing part of the initial data. Then the solution of KdV is
approximated by

u(x, t, ε) = uc +
( ε
k

)2/7
U(X,T )−

( ε
k

)4/7 f (IV )
L (uc)

63f ′′′L (uc)
×[

QUX + 2UXX + 4U2 + 15T − 90T 2UX − 3XUUX −
1

2
XUXXX

]
+O(ε

5
7 )

(2.15)

and Q(X,T ) is the integral of U(X,T ),

Q =
1

10
UXUXXX −

1

20
U2
XX +XU − 3TU2 +

1

4
U4 +

1

2
UU2

X , QX = U.

The correction term of order ε
2
7 was rigorously derived using steepest descent analysis for the

Riemann-Hilbert problem for KdV in [15]. Such an approximation was already discovered for the

Gurevich-Pitaevskii solution of KdV in [54]. The correction of order ε4/7 was derived in [18].

2.3. Leading edge. Near the leading edge at the left of the zone where the oscillations become
small, a multiscale analysis and numerical results [40] showed that the envelope of the oscillations
is asymptotically described by a particular solution to the second Painlevé equation (PII)

(2.16) q′′(s) = sq + 2q3(s).

The special solution we are interested in, is the Hastings-McLeod solution [44] which is uniquely
determined by the boundary conditions

q(s) =
√
−s/2(1 + o(1)), as s→ −∞,(2.17)

q(s) = Ai(s)(1 + o(1)), as s→ +∞,(2.18)

where Ai(s) is the Airy function. Although any nonzero Painlevé II solution has an infinite number
of poles in the complex plane, it is known [44] that the Hastings-McLeod solution q(s) is smooth
for all real values of s.

The leading edge corresponds to the Whitham equations in the confluent case where

β3(x, t) = β2(x, t) = v(t), β1(t) = u(t),

see also (2.1). There exists a time t̃ > tc such that for tc < t < t̃, the leading edge x−(t) is
determined uniquely by the system of equations [55, 42]

x−(t) = 6tu(t) + fL(u(t)),(2.19)

6t+ θ(v(t);u(t)) = 0,(2.20)

∂vθ(v(t);u(t)) = 0,(2.21)

with u(t) > v(t) and with

(2.22) θ(v;u) = θ(v;u) =
1

2
√

2

∫ 1

−1
f ′L

(
1 +m

2
v +

1−m
2

u

)
dm√
1−m.

Furthermore x−(t), u(t), and v(t) are smooth functions of t. Throughout the rest of the subsection,
whenever we refer to u, we mean by this the solution of the system (2.19)-(2.21) for a given time
tc < t < t̃, while we denote the solution of the KdV equation as u(x, t, ε) and the solution of the
Hopf equation as u(x, t).
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The behaviour of the solution of KdV near the leading edge as ε → 0 is described as follows.
Take a double scaling limit where ε→ 0 and at the same time x→ x−(t) in such a way that

(2.23) lim
ε→ 0

x→ x−(t)

[
x− x−(t)

ε2/3

]

remains bounded. In this double scaling limit, the solution u(x, t, ε) of the KdV equation (1.1) with
initial data u0 has the asymptotic expansion [16]

(2.24) u(x, t, ε) = u− 4ε1/3

c1/3
q (s(x, t, ε)) cos

(
Θ(x, t)

ε
+ ε1/3Θ1(x, t, ε)

)
+

x− x−
6t+ f ′L(u)

− 4ε2/3

c2/3(u− v)
q (s(x, t, ε))2 sin2

(
Θ(x, t)

ε

)
+O(ε).

Here x− and v < u (each of them depending on t) solve the system (2.19), and the phase Θ(x, t) is
given by

(2.25) Θ(x, t) = 2
√
u− v(x− x−) + 2

∫ u

v
(f ′L(ξ) + 6t)

√
ξ − vdξ.

Furthermore

(2.26) c = −
√
u− v ∂

2

∂v2
θ(v;u) > 0, s(x, t, ε) = − x− x−

c1/3
√
u− v ε2/3 ,

with θ defined by (2.22), and q is the Hastings-McLeod solution to the Painlevé II equation. The
correction to the phase Θ1(x, t, ε) takes the form

(2.27) Θ1(x, t, ε) =
1

c1/3

[(
q′

q
+ p

)
∂3v3θ(v;u)

6∂2
v2
θ(v;u)

−
5p+ q′

q

4(u− v)

+
s(x, t, ε)2

4

(
∂3v3θ(v;u)

3∂2
v2
θ(v;u)

− 3

2(u− v)
+

2c
√
u− v

6t+ f ′L(u)

)]
,

where we used the notations

q = q(s), q′ = q′(s), p = p(s) = −q4(s)− sq2(s) + q′(s)2,

with s = s(x, t, ε) and p′(s) = −q2.
Remark 2.2. Note that the leading order term in the expansion (2.24) of u(x, t, ε) is given by
u(t) the solution of the Hopf equation at the leading edge. The second term in (2.24) is of order

ε1/3, while the remaining terms are of order ε2/3. From the O(ε1/3)-term, we observe that u(x, t, ε)
develops oscillations of wavelength O(ε) at the leading edge, the envelope of the oscillations is

proportional to the Hastings-McLeod solution q. If we let (x− x−(t))/ε
2
3 → −∞ (so that x lies to

the left of the leading edge), the terms with the oscillations disappear due to the exponential decay
of q, see (2.18). We are then left with only two terms in (2.24), which are the first two terms in
the Taylor series of the Hopf solution u(x, t) near x−.
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Remark 2.3. The formula (2.24) can be obtained from a multiple scale analysis [40] from (2.1),
letting

β3(x, t) = v(t)− 2ε1/3

c1/3
q (s(x, t, ε)) , β2(x, t) = v(t) +

2ε1/3

c1/3
q (s(x, t, ε)) ,

β1(t) = u(t) +
x− x−

6t+ f ′L(u)
.

2.4. Trailing edge. The trailing edge x+(t) of the oscillatory interval is uniquely determined by
the confluent form β1 = β2 = v and β3 = u, v > u, of the equations (2.8), namely [55, 42]

x+(t) = 6tu(t) + fL(u(t)),(2.28)

6t+ θ(v(t);u(t)) = 0,(2.29) ∫ v(t)

u(t)
(6t+ θ(λ;u(t)))

√
λ− u(t)dλ = 0,(2.30)

(2.31)

where θ(v;u) has been defined in (2.22).

Let x+ = x+(t), u = u(t), and v = v(t) solve the system (2.28)-(2.30), and let us take a double
scaling limit where ε→ 0 simultaneously with x→ x+(t) in such a way that

y := 2
√
v − u x− x

+

ε ln ε

remains bounded: there exists a real M > 0 such that |y| < M . Then there exists t̃ > tc such that
for tc < t < t̃, we have the following expansion for the KdV solution u(x, t, ε) in the double scaling
limit [17],

(2.32) u (x, t, ε) = u+ 2(v − u)

dMe∑
j=0

sech2(Xj) +O(ε ln2 ε),

where dMe is the smallest integer ≥M ,

Xj =
1

2
(
1

2
− y + j) ln ε− ln(

√
2πhj)− (j +

1

2
) log γ,

hj =
2

j
2

π
1
4
√
j!
, γ = 4(v − u)

5
4

√
−∂vθ(v;u),

(2.33)

and θ is given by (2.22). Observe that hj are the normalization constants of the Hermite polyno-
mials.

Remark 2.4. Observe that each term in the sum of (2.32) generates a pulse with amplitude 2(v−u)
for y near a half positive integer which can be seen as a soliton. Indeed the term sech2(Xj) is of the

order O(1) for y = j + 1/2. For y = j or j + 1, it already decreased to order O(ε
1
2 ). For y = j − 1

2

or j + 3
2 , the contribution of sech2(Xj) is absorbed by the error term O(ε ln2 ε). Clearly, since j is

nonnegative, the solitons appear only for y positive, that is for x < x+, namely inside the Whitham
zone.
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Remark 2.5. The phase defined in (2.2) satisfies the formal limit

2K(s)Ω|β1'β2 =
x− x+

ε

√
v − u+O((β1 − β2)2),

and from the Whitham solution (2.8) one obtains in the limit β1 → β2

x− x+(t) ' −1

4
∂vθ(v;u)

(
β1 − β2

2

)2

log

(
β1 − β2

2

)2

.

The Jacobi elliptic function dn→ sech as the modulus s→ 1 and

K(s) ' 1

2
log

[
8

1− s

]
, as s→ 1.

Therefore the formal limit of the solution (2.6) in terms of elliptic functions as s→ 1, β1, β2 → v,
β3 → u, gives

(2.34) u(x, t, ε) ' u+ 2(v − u) sech2

[
x− x+

ε

√
v − u+ (j +

1

2
) log

[
8

1− s

]]
,

for any positive integer j, due to the periodicity of the elliptic function dn. Choosing(
β1 − β2

2

)2

=
4ε

∂vθ(v, u)
√
v − u

and inserting it in (2.34) one can partially reproduce the formula (2.32) in the sense that all
the terms in the phase Xj defined in (2.33) can be reproduced except the one containing the
normalization constants of the Hemite polynomials hj . We would like to remark that the formal
limit (2.34) has appeared several times in the literature, but such limit does not describe the small
dispersion solution of KdV near the trailing edge, since the limiting value of the phase (2.2) does
not give the right result.

3. Numerical Methods

The numerical task in treating the small dispersion limit of KdV and various asymptotic formulas
consists in solving the KdV equation itself, certain ODEs of Painlevé type for a given asymptotic
behavior, and of the Whitham equations for which the implicit solution (2.7) exists. We will
summarize in this section how these different tasks are solved numerically, and how we control the
numerical accuracy.

3.1. KdV solution. Since critical phenomena are generally believed to be independent of the
chosen boundary conditions, we study a periodic setting in the following. This also includes rapidly
decreasing functions which can be periodically continued as smooth functions within the finite
numerical precision. This allows to approximate the spatial dependence via truncated Fourier series
which leads for the studied equations to large stiff systems of ordinary differential equations (ODEs),
see below. The use of Fourier methods not only gives spectral accuracy in the spatial coordinates
(the numerical error in approximating smooth functions decreases faster than any power of the
number N of Fourier modes), but also minimizes the introduction of numerical dissipation which is
important in the study of the purely dispersive effects we are interested in here. In Fourier space,
equation (1.1) has the form

(3.1) vt = Lv + N(v, t),
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where v denotes the (discrete) Fourier transform of u, and where L and N denote linear and non-
linear operators, respectively. The resulting system of ODEs consists in this case of stiff equations
where the stiffness is related to the linear part L (it is a consequence of the distribution of the
eigenvalues of L), whereas the nonlinear part contains only low order derivatives. In the small
dispersion limit, this stiffness is still present despite the small term ε2 in L. This is due to the fact
that the smaller ε is, the higher wavenumbers are needed to resolve the rapid oscillations.

Loosely speaking a stiff system is a system for which explicit numerical schemes as explicit Runge-
Kutta methods are inefficient, since prohibitively small time steps have to be chosen to control
exponentially growing terms. The standard remedy for this is to use stable implicit schemes, which
require, however, the iterative solution of a system of nonlinear equations at each time step which
is computationally expensive. In addition the iteration often introduces numerical errors in the
Fourier coefficients. Thus we used in [39] an integrating factor method, where the linear stiff part
is explicitly integrated. This can be conveniently done here since the operator L corresponding
to the third derivative with respect to x is diagonal in Fourier space. As was shown in [45],
integrating factor methods can suffer from order reductions, which means that the actual decrease
of the numerical error with the numerical resolution is much lower than the classical order of the
used method. This was confirmed for the small dispersion limit of KdV in [48]. There it was also
shown that exponential time differencing (ETD) schemes are very efficient for KdV. ETD schemes
were developed originally by Certaine [12] in the 60s, see [46] for a comprehensive review. The
basic idea is to use equidistant time steps h and to integrate equation (3.1) exactly between the
time steps tn and tn+1 with respect to t. With v(tn) = vn and v(tn+1) = vn+1, we get

vn+1 = eLhvn +

∫ h

0
eL(h−τ)N(v(tn + τ), tn + τ)dτ.

The integral will be computed in an approximate way for which different schemes exist. We use
here a Runge-Kutta method of classical order 4 due to Cox-Matthews [24]. As in [1] for the
Camassa-Holm equation, this approach could be amended by identifying two regimes t ∈ [0, t1] and
t ∈ [t1, tend] with t1 � tc. A much larger time step can be used in the first regime than in the
second where the rapid modulated oscillations appear. We do not use this approach here since it
was not necessary for the considered values of ε.

The accuracy of the numerical solution is controlled via the numerically computed conserved
energy of the solution

(3.2) E[u] =

∫
T
(2u3 − ε2u2x)dx,

which is an exactly conserved quantity for KdV. Numerically the energy E will be a function of
time. We define ∆E := |(E(t)− E(0))/E(0)|. It was shown in [48] that this quantity can be used
as an indicator of the numerical accuracy if sufficient resolution in space is provided. The quantity
∆E typically overestimates the precision by two orders of magnitude. Since the numerical error
has to be clearly smaller than the difference between KdV solution and the asymptotic descriptions
we want to test (which give at best descriptions of order ε) we are interested in a numerical value
clearly below the smallest considered value of ε. To ensure this we will always ensure that the
modulus of the Fourier coefficients of the final state decreases well below 10−5 (thus providing the
needed resolution), and that the quantity ∆E is smaller than 10−6 (in general it is of the order of
machine precision, i.e. 10−14).
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We consider in the following always the example u0 = −sech2x and values of

ε = 10−1, 10−1.25, . . . 10−3.5.

For the smallest values of ε, we use N = 219 Fourier modes and Nt = 4 ∗ 105 time steps; for larger
values of ε between 215 and 217 Fourier modes, and between 104 to 105 time steps. The oscillatory
zone for ε = 10−3.5 can be seen in Fig. 3. The Fourier coefficients for this solution are shown in
Fig. 4.
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Figure 3. The oscillatory zone in the solution to the KdV equation for the initial
data u0(x) = −sech2x and ε = 10−3.5 for t = 0.4. The oscillations are so rapid, that
they are graphically difficult to represent though they are numerically well resolved.

3.2. Numerical solution of the Whitham equations and of the Hopf equation. The
Whitham equations (2.7) are solved for given initial data by inverting the hodograph transform
(2.8) to obtain β1 > β2 > β3 as a function of x and t, and similarly for the implicit solution of the
Hopf equation (1.3). Since the hodograph transform becomes degenerate at the leading and trail-
ing edge we solve the system (2.19)–(2.21) and (2.28)–(2.30) instead of (2.8) to avoid convergence
problems.

These equations are of the form

(3.3) Si({yi}, x, t) = 0, i = 1, . . . ,M,

where the Si denote some given real function of the yi and x, t. The task is to determine the yi in
dependence of x and t. To this end we determine the yi for given x and t as the zeros of the function
S :=

∑M
i=1 S

2
i . This is done numerically by using the algorithm of [49] which is implemented as the
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Figure 4. Fourier coefficients for the solution in Fig. 3.

function fminsearch in Matlab. The algorithm provides an iterative approach which converges in
our case rapidly if the starting values are close enough to the solution (see below how the starting
values are chosen). We calculate the zeros to the order of machine precision.

For a given t > tc, we always first solve the system (2.19)–(2.21) to obtain the leading edge
coordinate x−(t) and

β−1 (t) > β−2 (t) = β−3 (t).

Similarly we solve the equations (2.32) for x+ and β+1 = β+2 and β+3 which fixes the interval [x−, x+].
This interval is subdivided into a number of points xn, n = 1, . . . , Nx. In contrast to [39], we choose
the xn to be related to Chebyshev collocation points lj = cos(jπ/Nc), j = 0, 1 . . . , Nc, to allow for
better interpolation formulas. Since the polynomial interpolation we will use works best for smooth
functions, we use the analytic knowledge that β2 ∼ β3 ∼

√
x− x−(t) for x ∼ x−(t), and similarly

β1 ∼ β2 ∼
√
x+(t)− x for x ∼ x+(t). Thus we put for j = 0, . . . , Nc

xj = x−(t) +
x+(t)− x−(t)

2

(1 + lj)
2

4
, x ∈ [x−(t),

1

2
(x−(t) + x+(t))]

and

xj = x+(t)− x+(t)− x−(t)

2

(1− lj)2
4

, x ∈ [
1

2
(x−(t) + x+(t)), x+(t)].

For given xj and t, the Whitham equations are solved as discussed in [39]. Thus the βi are sampled
on Chebyshev collocation points which can be used to obtain an expansion of these functions in
terms of Chebyshev polynomials, see for instance [36]. As for Fourier series, the order of magnitude
of the modulus of the coefficient of the highest order polynomial gives for smooth functions an
indication of the numerical resolution. For our example the Chebyshev coefficients decrease well
below 10−6 with Nc = 64 which is more than sufficient for our purposes. To obtain machine
precision, the integrals in (2.8) would have to be computed as described in [39] with higher precision
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for x close to the boundaries of the Whitham zone. The βi for the initial data u0 = −sech2x for
t = 0.4 can be seen in Fig. 5.
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Figure 5. Solutions of the Whitham equations (2.8) for the initial data u0 =
−sech2x for t = 0.4.

At intermediate values of x ∈ [x−(t), x+(t)], the βi are obtained from the values on the collocation
points via numerically stable barycentric Lagrange interpolation, see [2], which is essentially an
efficient implementation of the Lagrange polynomial for Chebyshev collocation points.

3.3. Painlevé transcendents. The asymptotic solutions near the breakup point and the leading
edge are given by pole-free solutions with a given asymptotic behaviour for x → ±∞ to the P2

I
equation and the Painlevé II equation respectively. A way to solve these equations is to give a series
solution to the respective equation with the imposed asymptotics that is generally divergent. These
divergent series are truncated at finite values of x, xl < xr at the first term that is of the order of
machine precision. The sum of this truncated series at these points is then used as boundary data,
and similarly for derivatives at these points. Thus the problem is translated to a boundary value
problem on the finite interval [xl, xr].

In [40] we used for the P2
I solution a collocation method with cubic splines distributed as bvp4

with Matlab, in [41] for the Hastings-McLeod solution of PII a Chebyshev collocation method with
a fixed point iteration. Here we use again a Chebyshev collocation method for both equations. As
for the Whitham equations above, the solution of the ODEs is sampled on Chebyshev collocation
points xj , j = 0, . . . , Nc which can be related to an expansion of the solution in terms of Chebyshev
polynomials. Since the derivative of a Chebyshev polynomial can be again expressed in terms of a
linear combination of Chebyshev polynomials, the action of the derivative operator on the Hilbert
space of Chebyshev polynomials is equivalent to the action of a matrix on this space. This leads
to the well known Chebyshev differentiation matrices, see for instance [57]. Thus for the numerical
solution, in an ODE of the form F (u, ∂xu, ..) = 0, u is replaced by the vector u(xj), j = 0, . . . , Nc

and ∂x by the differentiation matrix. The ODE is in this setting replaced by Nc + 1 algebraic
equations. The boundary data are included via a so-called τ -method: The equations for j = 0
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and for j = Nc (for the fourth order equation j = 0, 1, Nc − 1, Nc) are replaced by the boundary
conditions. The resulting system of algebraic equations is solved with a standard Newton method.
The convergence of the solutions is in general very fast. We always stop the Newton iteration when
machine precision is reached. Again the highest Chebyshev coefficients are taken as an indication of
sufficient resolution of the solutions (they have to reach machine precision). A similar approach had
been used in [7] for the Hastings-McLeod solution. Solutions to the Painlevé II equation have been
computed as the solution of a Riemann-Hilbert problem in [53]. Certain Painlevé transcendents
can be expressed in terms of Fredholm determinants which can be computed with the methods of
[8]. For the study of Painlevé solutions with poles in the complex plane, an approach based on
Padé approximants has been presented in [37].

The Hastings-McLeod solution and the special solution to the P2
I equation for various values of

t can be seen in Fig. 6.
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Figure 6. Hastings-McLeod solution of the Painlevé II equation on the left, and
the special solution to the Painlevé I2 equation for several values of t on the right.

4. Numerical solution of KdV, Whitham and Hopf equations

In this and the following sections, we will numerically solve the KdV equation (1.1) for the
initial data u0(x) = −sech2x for the values ε = 10−1, 10−1.25, . . . , 10−3.5, and compute the various
asymptotic descriptions of the small dispersion limit from sect. 2. We will study the validity of
these asymptotic descriptions in various regions of the (x, t)-plane. To obtain the ε-dependence of
a certain quantity A, we perform a linear regression analysis for the dependence of the logarithms,
lnA = a ln ε+ b. This allows to obtain numerically the scaling of the difference between numerical
and asymptotic solutions also for the cases where no analytic behavior is yet known. We first
consider the asymptotic description based on the Hopf solution outside the Whitham zone and the
one-phase KdV solution inside the zone with branch po of the elliptic surface given by the Whitham
equations.

Outside the Whitham zone, the Hopf solution for the same initial data as the KdV solution gives
an asymptotic description of the latter. Inside the Whitham zone, the one-phase KdV solution
provides an asymptotic solution.
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Before breakup: For times much smaller than the critical time, we find that the L∞ norm of the
difference between Hopf and KdV solutions decreases as ε2. More precisely we find by linear
regression an exponent a = 1.9987 with correlation coefficient r = 0.999995 and standard deviation
a = 0.0051.
At breakup, t = tc: For times close to the breakup time, the Hopf solution develops a gradient
catastrophe. The largest difference between Hopf and KdV solution can be found close to the
breakup point. We determine the scaling of the L∞ norm of the difference between Hopf and KdV
solutions on the whole interval of computation. We find that its scaling is compatible with ε2/7

as conjectured in [28] and proven in [15]. More precisely we find in a linear regression analysis
a = 0.2929 (2/7 = 0.2857 . . .) with a correlation coefficient r = 0.99996 and standard deviation
a = 0.0022.
After breakup: For times much greater than the critical time of the Hopf solution, we find that
the asymptotic solution given by Hopf solution and the one-phase KdV solution via the Whitham
equations gives a very good description of the KdV solution. Thus it is necessary to plot the
difference between these solutions as done in Fig. 7

It can be seen that this difference is not uniform in x, and that this applies also for the decrease
with ε. The approximation is very good close to the centre of the Whitham zone, but much worse at
the edges. We define the interior part of the zone tentatively as the interval symmetric to the centre
of half the length of the zone. The results do not depend on whether this zone is taken slightly
smaller or bigger. We find that the L∞ norm of the difference of the numerical KdV solution
and the one-phase KdV solution (2.1) decreases there roughly as ε. More precisely we find in a
linear regression analysis a = 0.98 with a correlation coefficient r = 0.998 and standard deviation
a = 0.047.

At the leading edge we find that the error is always biggest close to the boundary of the Whitham
zone. In an interval symmetric to this boundary with the same length as the above interior zone,
we find that the difference between KdV solution and asymptotic solutions via Hopf and the one-
phase KdV solution (2.1) scale roughly as ε1/3. More precisely we find in a linear regression analysis
a = 0.33 with a correlation coefficient r = 0.999 and standard deviation a = 0.012.

The situation at the trailing edge is more complicated. It can be seen in Fig. 7 that the difference
between the KdV solution and one-phase KdV solution (2.1) is almost constant (roughly 0.04) there.
Notice that this error of order O(1) which is supposed to appear in a zone of width ε ln ε close to
the trailing edge of the Whitham zone was not seen in [39] because of a lack of resolution. This
is one of the reasons why we redid the computations with a considerably higher resolution. It can
also be seen in Fig. 7 that the O(1) oscillation is moving closer and closer to the edge with smaller
ε as expected. The difference between KdV and Hopf solutions close to the trailing edge decreases,
however, roughly as

√
ε. More precisely we find in a linear regression analysis a = 0.54 with a

correlation coefficient r = 0.997 and standard deviation a = 0.03.

5. Leading edge

In this section we study numerically the asymptotic formula (2.24) via the Hastings-McLeod
solution which approximates the KdV solution at the leading edge as ε → 0. We will refer to this
asymptotic solution as PII asymptotics. We identify the zone, where the PII asymptotics gives a
better description of KdV than the Hopf (1.4) or the one-phase KdV solution (2.1) and study the
ε-dependence of the errors.
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Figure 7. The blue line describes the difference between the numerical solution
of the KdV equation and the asymptotic formula (2.1) for the initial data u0(x) =
−1/ cosh2 x and for t = 0.4. The green lines represent the difference between the
numerical solution of the KdV equation and the Hopf solution (1.3).

In Fig. 8 we show the KdV solution, the asymptotic solution via Whitham and Hopf and the
PII - asymptotics near the leading edge of the Whitham zone. It can be seen that the one-phase
KdV solution gives a very good description in the interior of the Whitham zone as discussed above,
whereas the PII asymptotics gives as expected a better description near the leading edge.

In Fig. 9 the KdV solution and the PII asymptotics are shown in one plot for ε = 10−2. It can
be seen that the agreement near the edge of the Whitham zone is so good that one has to study
the difference of the solutions. The solution only gives locally an asymptotic description and is
quickly out of phase for larger distances from the leading edge, whereas the amplitude is roughly
of the right size.
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Figure 8. The figure shows in the upper part the numerical solution to the KdV
equation for the initial datum u0 = −sech2x and ε = 10−2 at t = 0.4, in the middle
the corresponding asymptotic solution in terms of Hopf and one-phase KdV solution,
and in the lower part the PII asymptotic solution (2.24).
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Figure 9. The numerical solution to the KdV equation for the initial datum u0 =
−sech2x and ε = 10−2 at t = 0.4 in blue and the corresponding PII asymptotic
solution (2.24) in green.
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Figure 10. The difference between the numerical solution to the KdV equation for
the initial datum u0 = −sech2x at t = 0.4 and the corresponding multiscale solution
(2.24) for four values of ε. Notice the scaling of the x and ∆ axes with a factor ε2/3

and ε respectively to take care of the expected scalings in x and of the shown error
next to the leading edge of the Whitham zone.

The difference between KdV solution and the PII asymptotics is shown for several values of ε in
Fig. 10. It can be seen that the error close to the Whitham edge is almost constant. The scales
in x and ∆ are rescaled by a factor ε2/3 and ε respectively which is the expected scaling behavior
of the zone, where the multiscale solution should be applicable, and of the expected error. It can
be seen that with these rescalings the error is of the same order for different values of ε. A linear
regression analysis for the logarithm of the difference ∆ between KdV and multiscale solution in
the interval [x− − ε2/3, x− + ε2/3] gives a scaling of the form ∆ ∝ εa with a = 1.00 with standard
deviation σa = 0.004 and correlation coefficient r = 0.99999. The result is almost the same in a
larger interval, e.g., [x−−2ε2/3, x−+2ε2/3] with just a slightly worse correlation. The found scaling
is thus as expected of order ε.
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Figure 11. In Fig. (a) the difference between the numerical solution to the KdV
equation for the initial datum u0 = −sech2x at t = 0.4 for ε = 10−2 and the
corresponding PII asymptotic solution (2.24) in blue, and the difference between
KdV and Hopf and one-phase KdV solution in green. In Fig. (b) the edges of
the zone where the PII asymptotic solution (2.24) provides a better asymptotic
description of KdV than the Hopf or the one-phase KdV solution in dependence of
ε.

As can be already seen from Fig. 8, the multiscale solution gives a better asymptotic description
of KdV near the leading edge of the Whitham zone than the Hopf and the one-phase KdV solution.
This is even more obvious in Fig. 11a where the difference between KdV and the asymptotic
solutions is shown.

This suggests to identify the regions where each of the asymptotic solutions gives a better de-
scription of KdV than the other. The results of this analysis can be seen in Fig. 12. This matching
procedure clearly improves the KdV description near the leading edge. We also show the difference
between this matched asymptotic solution and the KdV solution for two values of ε. Visibly the
zone, where the solutions are matched, decreases with ε.

There is a certain ambiguity in the precise definition of this matching zone due to the oscillatory
character of the solutions. The limits of the matching zone for several values of ε can be seen in
Fig. 11b. Due to the lower number of oscillations in the Hopf region, the matching zone extends
much further into this region than in the Whitham region. There does not appear to be a clear
scaling law for the width of this zone. It can be already seen in Fig. 12 that the error at the
matching does not scale with ε. In fact we find a scaling close to εa with a ∼ 2/3 (in the Whitham
zone we find a = 0.63 and σa = 0.015 with r = 0.9995, and in the PII zone a = 0.60 and σa = 0.063
with r = 0.99). Thus it is not possible to obtain an error of order ε up to the trailing edge. It is
clear that analytic connection formulae between the two asymptotic solutions must be established
to obtain an error of order ε in the shown range.
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Figure 12. In the upper part of Fig. (a) one can see the difference between the
numerical solution to the KdV equation for the initial datum u0 = −sech2x and
ε = 10−2 at t = 0.4 and the corresponding asymptotic solution in terms of Hopf
and one-phase KdV solutions. The lower part shows the same difference, which is
replaced close to the leading edge of the Whitham zone by the difference between
KdV solution and the PII asymptotic solution (2.24) (shown in red where the error
is smaller than the one shown above). The figures in (b) show the same situation as
in the lower part of (a) for two values of ε. Notice the rescaling of the ∆ axis with
a factor ε, the expected scaling of the error.

6. Trailing edge

In this section we study numerically for times greater than the critical time the soliton asymptotic
formula (2.32) that approximates as ε → 0 the solution of KdV near the trailing edge of the
oscillatory zone. We identify the zone, where this asymptotic formula gives a better description of
KdV than the one-phase KdV (2.1) and Hopf (1.4) solutions and study the ε-dependence of the
errors.

In Fig. 13 we show the KdV solution, the asymptotic solution via Whitham and Hopf and the
soliton asymptotics near the trailing edge of the Whitham zone. As before the one-phase KdV
solution gives a very good description in the interior of the Whitham zone, whereas the soliton
asymptotic formula gives as expected a better description near the trailing edge.

In Fig. 14 the KdV and the multiscale solution are shown in one plot for ε = 10−2. It can be
seen that the agreement very close to the boundary of the Whitham zone is once more so good
that the difference of the solutions has to be studied. The solution only gives locally an asymptotic
description, and the quality of the approximation is not symmetric around the critical point.

The difference between KdV solution and the soliton asymptotic solution is shown for several
values of ε in Fig. 15. The scales in x and ∆ are both rescaled by a factor ε which is the expected
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Figure 13. The figure shows in the upper part the numerical solution to the KdV
equation for the initial datum u0 = −sech2x and ε = 10−2 at t = 0.4, in the middle
the corresponding asymptotic solution in terms of Hopf and one-phase KdV solution,
and in the lower part the multiscale solution (2.32).

scaling behavior of the zone (numerically ε and ε ln ε are indistinguishable), where the soliton
asymptotic solution should be applicable, and of the expected error. It can be seen that with these
rescalings the error is of the same order for different values of ε. A linear regression analysis for the
logarithm of the difference ∆ between KdV and multiscale solution in the interval [x+ + ε ln ε, x+−
ε ln ε] gives a scaling of the form ∆ ∝ εa with a = 1.07 with standard deviation σa = 0.056 and
correlation coefficient r = 0.998. The found scaling is thus compatible with ε ln ε.

It can be seen in Fig. 16a, where the difference between KdV and the asymptotic solutions is
shown, that soliton asymptotic solution gives a much a better description of KdV near the trailing
edge of the Whitham zone than the Hopf and the one-phase KdV solution.

Again we can identify the regions where each of the asymptotic solutions gives a better description
of KdV than the other. The results of this analysis can be seen in Fig. 17a. This matching procedure
clearly improves the KdV description near the trailing edge. In Fig. 17b we see the difference
between this matched asymptotic solution and the KdV solution for two values of ε. Visibly the
zone, where the solutions are matched, decreases with ε.

Once more there is no precise definition of this matching zone due to the oscillatory character of
the solutions. We determine it as the point where the curves of the differences intersect, or where
they come closest, before one error dominates the other for all smaller respectively larger values
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Figure 14. The numerical solution to the KdV equation for the initial datum
u0 = −sech2x and ε = 10−2 at t = 0.4 in blue and the corresponding multiscale
solution (2.32) in green.

of x. The limits of the matching zone for several values of ε can be seen in Fig. 16b. There does
not appear to be a clear scaling law for the width of this zone. It can be already seen in Fig. 17b
that the error in the matching zone does not scale with ε as close to the boundary of the Whitham
zone. In fact we find a scaling close to ε1/2 in both cases, but the correlation is not very good. As
for the leading edge, it is necessary to establish analytical connection formulae.

7. Point of gradient catastrophe

In this section we study numerically the approximation (2.15) to the solution u(x, t, ε) of KdV
as ε → 0 near the point of gradient catastrophe (xc, tc) for the solution of the Hopf equation. We
identify the zone, where the P2

I asymptotic formula (2.15) gives a better asymptotic description of
KdV than the Hopf or the one-phase KdV solution and study the ε-dependence of the errors. We
qualitatively study for a time t > tc close to tc how the various multiscale approximations perform.

7.1. Critical time. For the initial datum u0(x) = −sech2x the critical time is tc =
√

3/8 ∼ 0.2165
and the critical point xc = −

√
3/2 + ln((

√
3 − 1)/

√
2) ∼ −1.5245. In Fig. 18 we show the KdV

solution, the Hopf solution and the multiscale solution near the critical point of the Hopf solution
at the critical time. As before the Hopf solution gives a very good description for |x − xc| � 0,
whereas the P2

I asymptotic solution gives as expected a better description near the critical point.
The following figures are always symmetric with respect to xc.

In Fig. 19 the KdV solution and the P2
I asymptotic solution are shown in one plot for ε = 10−2.

It can be seen that the agreement very close to the critical point of the Hopf solution is again
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Figure 15. The difference between the numerical solution to the KdV equation for
the initial datum u0 = −sech2x at t = 0.4 and the corresponding soliton asymptotic
solution (2.32) for four values of ε. Note the scaling of the x and ∆ axes with a
factor ε to take care of the expected scaling in x and of the shown error next to the
trailing edge of the Whitham zone.

so good that the difference of the solutions has to be studied. The solution only gives locally an
asymptotic description.

The difference between KdV solution and P2
I asymptotic solution is shown for several values of

ε in Fig. 20. The scales in x are rescaled by a factor ε6/7, and the ones for ∆ by a factor ε5/7

respectively which is the expected scaling behavior of the zone, where the P2
I asymptotic solution

should be applicable, and of the expected error. It can be seen that with these rescalings the error
is of the same order for different values of ε, at least close to the critical point. We also show in
this figure the different behaviour of the terms in (2.15) in order ε2/7 and order ε4/7. The former
is not symmetric with respect to the critical point. In fact the approximation is better on the side
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Figure 16. In Fig. (a), the difference between the numerical solution to the KdV
equation for the initial datum u0 = −sech2x and ε = 10−2 at t = 0.4 and the
corresponding soliton asymptotic (2.32) in green, and the difference between KdV
and Hopf and one-phase KdV solution in blue. In Fig. (b) the edges of the zone
where the soliton asymptotic (2.32) provides a better asymptotic description of KdV
than the Hopf or the one-phase KdV solution in dependence of ε.

where the oscillations appear. However if one studies positive initial data as in [31], the oscillations
are on the side of the critical point where the approximation in terms of the P2

I solution is worse.
As is clear from Fig. 18, the multiscale solution gives a better asymptotic description of KdV

near the critical point than the Hopf. This is even more obvious in Fig. 21a where the difference
between KdV and the Hopf solution is shown.

Again we can identify the regions where each of the asymptotic solutions gives a better description
of KdV than the other. The results of this analysis can be seen in Fig. 22a. This matching procedure
clearly improves the KdV description near the critical point. In Fig. 22b we see the difference
between this matched asymptotic solution and the KdV solution for two values of ε. Visibly the
zone, where the solutions are matched, decreases with ε (notice the rescaling of the axes with ε).

Once more there is no precise definition of this matching zone due to the oscillatory character of
the solutions. We choose it as in the previous sections as given where the curves of the differences
intersect, or where they come closest before one error dominates the other. The limits of the
matching zone for several values of ε can be seen in Fig. 21b. There does not appear to be a
clear scaling law for the width of this zone. A linear regression analysis for the logarithm of the
difference ∆ between KdV and multiscale solution in the matching zone gives a scaling of the form
∆ ∝ εa with a = 0.586 (4/7 ∼ 0.5714) with standard deviation σa = 0.06 and correlation coefficient

r = 0.99 for the terms up to order ε2/7 and with a = 0.62 (5/7 ∼ 0.7143) with standard deviation

σa = 0.09 and correlation coefficient r = 0.98 for the terms up to order ε4/7. The found scaling is
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Figure 17. In the upper part of Fig. (a) one can see the difference between the
numerical solution to the KdV equation for the initial datum u0 = −sech2x and
ε = 10−2 at t = 0.4 and the corresponding asymptotic solution in terms of Hopf
and one-phase KdV solution. The lower part shows the same difference, which is
replaced close to the trailing edge of the Whitham zone by the difference between
KdV solution and the soliton asymptotic (2.32) (shown in red where the error is
smaller than the one shown above). In Fig. (b) the same situation as in the lower
part of (a) is shown for two values of ε: 10−2, 10−3. The ∆-axis is rescaled by a
factor ε.

thus compatible with the expected ε4/7 and ε5/7 respectively. The error in the Hopf zone at the
limits of the matching zone are of the same order. As before it would be interesting to study the
connection formulae between the Hopf and P2

I zone.

7.2. Close to the critical time. It is an interesting question to study how the various multiscale
approximations perform for a time t greater than the critical time with t ∼ tc, where all previously
studied asymptotic formulae should be applicable. We consider just one value of ε (ε = 10−2) since
the various multiscale expansions use different ε-dependent rescalings of the time. We consider the
time t = 0.23 > tc ∼ 0.2165.

First we study the situation in the vicinity of the leading edge (x = −1.6051 . . .). In Fig. 23,
the KdV solution can be seen in this case as well as the asymptotic solution in terms of Hopf and
one-phase KdV solution, the multiscale solution (2.24) near the leading edge and the multiscale
solution (2.15) close to the critical point.

In Fig. 24 the same solutions can be seen in one figure.
It can be seen already from these figures or from the plot of the differences between the asymptotic

solutions and the KdV solution in Fig. 24b that the asymptotic solution in terms of Hopf and one-
phase KdV solution performs worst close to the leading edge, and that the multiscale solution
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Figure 18. The figure shows in the upper part the numerical solution to the KdV
equation for the initial datum u0 = −sech2x and ε = 10−2 at t = tc, in the middle
the corresponding Hopf solution, and in the lower part the P2

I asymptotics (2.15).

(2.15) in terms of the P2
I transcendent is most satisfactory. The multiscale solution (2.24) is only

very close to the leading better than the P2
I asymptotics. It captures qualitatively the oscillations

in the Hopf region, but is not oscillating around the Hopf solution as KdV. As can be seen from
(2.24) the reason for this is that the amplitude of this solution is divided by u− v which tends to
0 at the critical point. The P2

I asymptotics also quickly becomes out of phase in the Hopf region.
Thus to obtain a satisfactory description of the small dispersion limit of KdV close to the critical
point, one has to study connection formulae between the various asymptotic solutions.

The situation near the trailing edge (x = −1.5757 . . .) is similar. In Fig. 25, the KdV solution
can be seen in this case as well as the asymptotic solution in terms of Hopf and one-phase KdV
solution, the multiscale solution (2.32) near the leading edge and the multiscale solution (2.15)
close to the critical point.

In Fig. 26 the same solutions can be seen in one figure. These figures as well as the plot of the
differences between the asymptotic solutions and the KdV solution in Fig. 26b show that the as-
ymptotic solution in terms of Hopf and one-phase KdV solution performs worst close to the trailing
edge, and that the P2

I asymptotic solution (2.15) performs best. The soliton asymptotic solution
(2.24) is better than the P2

I asymptotics only very close to the trailing edge. The P2
I asymptotics

also quickly becomes unsatisfactory in the Hopf region. Thus to obtain a better description of
the small dispersion limit of KdV close to the critical point, one has to study connection formulae
between the various asymptotic solutions.
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Figure 19. The numerical solution to the KdV equation for the initial datum
u0 = −sech2x and ε = 10−2 at t = tc in blue and the corresponding P2

I asymptotic
solution in green.

8. Outlook

The numerical results of the previous sections have shown that the proposed asymptotic descrip-
tions lead in fact to an error of order ε in various regions of the x, t-plane where the respective
formulae are supposed to hold. However the asymptotic description at the trailing edge of the os-
cillatory zone and the point of gradient catastrophe are characterized by errors of higher order. In
order to obtain a complete analytic asymptotic description in the (x, t) plane, analytic connection
formulae have to be established between the various asymptotic formulae. For example, despite
the asymptotic formulas (2.1) and (2.24) having an error of order ε, the numerical results show
that there is still a region near the leading edge at the boundary of the Whitham zone where the
error is bigger. This means that a connection formula between the elliptic expansion (2.1) and the

expansion (2.24) (where the terms of order ε
2
3 have been dropped), is needed.

In [13] Claeys has derived connection formula for the P2
I solution U(X,T ) of (2.10) in different

regions of the (X,T ) plane. Using these relations, one can derive in a non rigorous way the
corresponding connection formulas for the asymptotic solution of the KdV equation near the point
of gradient catastrophe. Indeed the P2

I solution U(X,T ) describes a singular transition between
a region of simple algebraic asymptotics and a region of more complicated oscillatory asymptotics
involving the Jacobi elliptic θ-function. One may thus expect that U(X,T ) itself also exhibits
different types of asymptotics. Indeed the following result holds [13]:

• X → ±∞ and T → −∞ or T → +∞ in such a way S =
X

T
3
2

remains bounded away from

the interval [−12
√

3,
4
√

15

9
], then U(X,T ) has an algebraic asymptotics;
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Figure 20. The difference between the numerical solution to the KdV equation for
the initial datum u0 = −sech2x at t = tc and the corresponding multiscale solution
for four values of ε, in blue the terms in (2.15) up to order ε2/7, in green up to order

ε4/7. Note the scaling of the x and ∆ axes with a factor ε6/7 and ε5/7 respectively
to take care of the expected scaling in x and of the shown error next to the critical
point.

• if −12
√

3 < S <
4
√

15

9
, then U(X,T ) has an elliptic asymptotics;

• for S → −12
√

3, U(X,T ) has a PII asymptotics;

• for S → 4
√

15

9
, U(X,T ) has a soliton-like asymptotics.

Substituting the algebraic asymptotic [13] of the P2
I solution into the asymptotic expansion

(2.15), one obtains in a non rigorous way the connection formula between the Hopf asymptotic
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Figure 21. In Fig. (a) the difference between the numerical solution to the KdV
equation for the initial datum u0 = −sech2x and ε = 10−2 at t = tc and the
corresponding P2

I asymptotic solution in blue, and the difference between KdV and
Hopf solution in green. In Fig. (b) the edges of the zone where the P2

I asymptotic
solution provides a better asymptotic description of KdV than the Hopf solution in
dependence of ε.

solution (1.4) and (2.15). More precisely in the limit when

X =
x− xc − 6uc(t− tc)

(k)1/7ε
6
7

, T =
t− tc

(k)3/7ε
4
7

goes to infinity in such a way that s =
X

T
3
2

=
√
k
x− xc − 6uc(t− tc)

(t− tc)
3
2

is outside the interval

(−12
√

3,
4
√

15

9
), or T → −∞ then the solution of the KdV equation is approximated by

u(x, t, ε) = uc + z(s)

(
t− tc√

k

) 1
2

+O

(
ε
4
7

t− tc

)
.

where z(s) solves the equation s = 6z − z3. The second term on the right hand side of the above
expression coincides with the solution of the Hopf equation with initial data fL(u) = −ku3.

8.1. P2
I asymptotics and elliptic asymptotics. The asymptotic expansions (2.1) and (2.15)

have a connection region that follows from substituting into (2.15) the elliptic asymptotics for the
P2
I solution obtained in [13]. In the limit when

X =
x− xc − 6uc(t− tc)

(k)1/7ε
6
7

, T =
t− tc

(k)3/7ε
4
7
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Figure 22. In the upper part of Fig. (a) one can see the difference between the
numerical solution to the KdV equation for the initial datum u0 = −sech2x and
ε = 10−2 at t = tc and the corresponding Hopf solution. The lower part shows
the same difference, which is replaced close to the critical point by the difference
between KdV solution and the P2

I asymptotic solution (shown in red where the error
is smaller than the one shown above). Fig. (b) shows the same situation as the lower

figure in (a) for two values of ε. The ∆-axis is rescaled by a factor ε5/7, the x-axis

by a factor ε6/7.

goes to infinity in such a way that −12
√

3 < s =
X

T
3
2

=
√
k
x− xc − 6uc(t− tc)

(t− tc)
3
2

<
4
√

15

9
, then the

solution of the KdV equation is approximated by

(8.1) u(x, t, ε) = uc +

√
t− tc√
k

(
b1 + b2 + b3 + 2α+

b1 − b3
2K2(s)

(log ϑ)′′(Ω̃(s, t); T )

)
+O

(
ε
4
7√

t− tc

)
,

where α, s and T are defined in (2.3) (with the substitution βi → bi) and the argument of the
Jacobi elliptic function ϑ is given by

(8.2) Ω̃ =
(t− tc)

7
4
√
b1 − b3

2εK(s)k
3
4

(s− 2(b1 + b2 + b3)− q).

Here the quantities bi = bi(s), with b1(s) > b2(s) > b3(s), describe the Gurevich-Pitaevski [43]
self-similar solution of the Whitham equations (2.7) with cubic initial data, namely the function
q = q(b1, b2, b3) in (2.4) is such that q(b, b, b) = b3 and the hodograph transform (2.8) takes the
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Figure 23. The figure shows from top to bottom the numerical solution to the
KdV equation for the initial datum u0 = −sech2x and ε = 10−2 at t = 0.23 > tc,
the asymptotic solution in terms of Hopf and one-phase KdV solution, the multiscale
solution (2.24), and the multiscale solution (2.15).

equivalent form [42]

6 = −
3∑
i=1

∂

∂bi
q =

1

5

[
(b1 + b2 + b3)

2 + 2(b21 + b22 + b23)
]

s =

3∑
i=1

(2bi − b1 + b2 + b3)
∂

∂bi
q + q =

2

15

[
(b1 + b2 + b3)

3 − 4(b31 + b32 + b33)
]

∫ b2

b3

√
(ξ − b1)(ξ − b2)(ξ − b3)(ξ +

1

2
(b1 + b2 + b3))dξ = 0.

(8.3)

The asymptotic expansion (8.1) should give the connection formula near the point of gradient
catastrophe (xc, tc) between the one-phase KdV asymptotics (2.1) and P2

I asymptotics (2.15). It
is straightforward to check that formula (2.1) reduces to (8.1) by expanding the initial data for
the Whitham equations at the point of gradient catastrophe and keeping the first order correction
(cubic term). Namely, if βi, i = 1, 2, 3 is the solution of the Whitham equation with the initial data
(1.1) and bi is the self-similar solution defined in (8.3), then

βi(x, t) = uc +

√
t− tc
k

bi(s) +O(t− tc).
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Figure 24. Fig. (a) shows the numerical solution to the KdV equation for the initial
datum u0 = −sech2x and ε = 10−2 at t = 0.23 > tc in blue, the asymptotic solution
in terms of Hopf and one-phase KdV solution in red, the multiscale solution (2.24)
in cyan, and the multiscale solution (2.15) in green. Fig. (b) shows the difference
between the asymptotic solution in terms of Hopf and one-phase KdV solution and
the numerical solution to the KdV equation in green, between the PII asymptotic
solution (2.24) and KdV in red, and the P2

I asymptotic solution (2.15) and KdV in
blue.

With this formula (8.1) can be recovered from (2.1) by the above substitution.The error in this
limit is of order t− tc. The connection formula (8.1) has already appeared in [38].

8.2. Connection between P2
I asymptotic and PII asymptotic or soliton asymptotic.

When S = −12
√

3 the P2
I solution has an asymptotic expansion that is provided by oscillations

whose envelope is given by the Hasting McLeod solution of the Painlevé II equation [13]. Plug-
ging this expansion into (2.15), one obtains in a non rigorous way the connection formula between

(2.15) and the PII asymptotic solution (2.24), where the terms of order ε
2
3 have been dropped.

Introducing the variable

ξ = −X + 12
√

3T
3
2

c0c1T
1
3

= −x− xc − 6uc(t− tc) + 12
√

3k−
1
2 (t− tc)

3
2

ε
2
3 c0(t− tc)

1
3

, c0 =
2

7
6 3

1
12

5
1
6

, c1 =

√
5
√

3

2

in the P2
I asymptotic solution (2.15) and letting T → +∞ in such a way that XT−

3
2 = 12

√
3 one

obtains from [13]

(8.4) u(x, t, ε) = uc + 2
√

3

√
t− tc
k
−

q(ξ)
( ε
k

) 1
3

c0

(
t− tc
k

) 1
12

cos

(
(t− tc)

7
4

εk
3
4

ω

)
+O

( ε
4
7

t− tc

) 2
3
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Figure 25. The figure shows from top to bottom the numerical solution to the
KdV equation for the initial datum u0 = −sech2x and ε = 10−2 at t = 0.23 > tc,
the asymptotic solution in terms of Hopf and one-phase KdV solution, the soliton
asymptotic solution (2.32), and the P2

I asymptotic solution (2.15).

where q(ξ) is the Hasting-McLeod solution of Painlevé II, and the phase ω is given by

ω =
88

7
c31 + 2c21c0ξ

(
t− tc
k

3
7 ε

4
7

)− 7
6

.

This expansion coincides with (2.24) when the initial data at time t = tc is approximated by the
cubic initial data fL(u) = −k(u − uc)3 + O(u − uc)4 with k defined in (2.14). Indeed in this case
the solution of system (2.19)-(2.21) takes the form

x−(t)− xc − 6uc(t− tc) = 12
√

3
(t− tc)

3
2√

k
+O((t− tc)

5
2 ),

u(t)− uc = 2
√

3

√
t− tc
k

+O(t− tc), v(t)− uc = −
√

3

2

√
t− tc
k

+O(t− tc).

Then plugging the above expressions of x−(t), u(t) and v(t) into (2.24) one arrives at (8.4) (with
a different error term though).

The P2
I solution has a connection region with the soliton asymptotics (2.32) when S =

4

9

√
15 [13].

Substituting the corresponding connection formula in [13] into (2.15) one obtains in a non rigorous
way the connection formula for the asymptotic expansions (2.15) and (2.32). Indeed introducing
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Figure 26. Fig. (a) shows the numerical solution to the KdV equation for the initial
datum u0 = −sech2x and ε = 10−2 at t = 0.23 > tc in blue, the asymptotic solution
in terms of Hopf and one-phase KdV solution in green, the multiscale solution (2.32)
in red, and the multiscale solution (2.15) in cyan. Fig. (b) shows the difference
between the asymptotic solution in terms of Hopf and one-phase KdV solution and
the numerical solution to the KdV in blue, between the soliton asymptotic solution
(2.32) and KdV in green, and the P2

I asymptotic solution (2.15) and KdV in red.

the variable

ξ = −8

7
c20

X − 4

9

√
15T

3
2

T−
1
4 log T

= −8

7
c20

x− xc − 6uc(t− tc)−
4

9

√
15k(t− tc)

3
2

ε(t− tc)−
1
4 log

(
t− tc
ε
4
7k

3
7

) , c0 =

√
7

6
(15)

1
4 ,

where X and T are defined as in (2.13), and letting T → +∞ in such a way that XT−
3
2 =

4

9

√
15

then

u(x, t, ε) = uc − 2

√
5

3

(
t− tc
k

) 1
2

+ 2c20

(
t− tc
k

) 1
2 ∑

j

sech2Xj+

O

((
t− tc
ε
4
7

)− 5
4

log2
(
t− tc
ε
4
7

))(8.5)
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where

Xj = −7

8
(
1

2
− ξ + j) lnT − ln(

√
2πhj)− (j +

1

2
) log

 16c
5
2
0

(15)
1
4

 ,

hj =
2

j
2

π
1
4
√
j!
.

(8.6)

This connection formula coincides with (2.32) when the initial data at t = tc is approximated by
the cubic initial data fL(u) = −k(u−uc)3 +O(u−uc)4 where k is defined in (2.14). In this case the

solution of the system of equation (2.28)- (2.30) takes the form x+(t)−xc−6uc(t− tc) =
4
√

15

9
√
k

(t−

tc)
3
2 +O((t−tc)

5
2 ), u(t)−uc = −2

3

√
15

√
t− tc
k

+O(t−tc) and v(t)−uc =
1

2

√
15

√
t− tc
k

+O(t−tc).
Plugging the above expressions of x+(t), u(t) and v(t) into (2.32) one obtains the connection formula
(8.5).

The rigorous derivation of the above connection formulas and their numerical implementation
will be investigated in a subsequent publication.
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