53,412 research outputs found

    On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases

    Full text link
    This article studies the expressive power of finite automata recognizing sets of real numbers encoded in positional notation. We consider Muller automata as well as the restricted class of weak deterministic automata, used as symbolic set representations in actual applications. In previous work, it has been established that the sets of numbers that are recognizable by weak deterministic automata in two bases that do not share the same set of prime factors are exactly those that are definable in the first order additive theory of real and integer numbers. This result extends Cobham's theorem, which characterizes the sets of integer numbers that are recognizable by finite automata in multiple bases. In this article, we first generalize this result to multiplicatively independent bases, which brings it closer to the original statement of Cobham's theorem. Then, we study the sets of reals recognizable by Muller automata in two bases. We show with a counterexample that, in this setting, Cobham's theorem does not generalize to multiplicatively independent bases. Finally, we prove that the sets of reals that are recognizable by Muller automata in two bases that do not share the same set of prime factors are exactly those definable in the first order additive theory of real and integer numbers. These sets are thus also recognizable by weak deterministic automata. This result leads to a precise characterization of the sets of real numbers that are recognizable in multiple bases, and provides a theoretical justification to the use of weak automata as symbolic representations of sets.Comment: 17 page

    Playing Games in the Baire Space

    Full text link
    We solve a generalized version of Church's Synthesis Problem where a play is given by a sequence of natural numbers rather than a sequence of bits; so a play is an element of the Baire space rather than of the Cantor space. Two players Input and Output choose natural numbers in alternation to generate a play. We present a natural model of automata ("N-memory automata") equipped with the parity acceptance condition, and we introduce also the corresponding model of "N-memory transducers". We show that solvability of games specified by N-memory automata (i.e., existence of a winning strategy for player Output) is decidable, and that in this case an N-memory transducer can be constructed that implements a winning strategy for player Output.Comment: In Proceedings Cassting'16/SynCoP'16, arXiv:1608.0017

    A Robust Class of Linear Recurrence Sequences

    Get PDF
    We introduce a subclass of linear recurrence sequences which we call poly-rational sequences because they are denoted by rational expressions closed under sum and product. We show that this class is robust by giving several characterisations: polynomially ambiguous weighted automata, copyless cost-register automata, rational formal series, and linear recurrence sequences whose eigenvalues are roots of rational numbers

    Register automata with linear arithmetic

    Full text link
    We propose a novel automata model over the alphabet of rational numbers, which we call register automata over the rationals (RA-Q). It reads a sequence of rational numbers and outputs another rational number. RA-Q is an extension of the well-known register automata (RA) over infinite alphabets, which are finite automata equipped with a finite number of registers/variables for storing values. Like in the standard RA, the RA-Q model allows both equality and ordering tests between values. It, moreover, allows to perform linear arithmetic between certain variables. The model is quite expressive: in addition to the standard RA, it also generalizes other well-known models such as affine programs and arithmetic circuits. The main feature of RA-Q is that despite the use of linear arithmetic, the so-called invariant problem---a generalization of the standard non-emptiness problem---is decidable. We also investigate other natural decision problems, namely, commutativity, equivalence, and reachability. For deterministic RA-Q, commutativity and equivalence are polynomial-time inter-reducible with the invariant problem

    Density Classification Quality of the Traffic-majority Rules

    Full text link
    The density classification task is a famous problem in the theory of cellular automata. It is unsolvable for deterministic automata, but recently solutions for stochastic cellular automata have been found. One of them is a set of stochastic transition rules depending on a parameter η\eta, the traffic-majority rules. Here I derive a simplified model for these cellular automata. It is valid for a subset of the initial configurations and uses random walks and generating functions. I compare its prediction with computer simulations and show that it expresses recognition quality and time correctly for a large range of η\eta values.Comment: 40 pages, 9 figures. Accepted by the Journal of Cellular Automata. (Some typos corrected; the numbers for theorems, lemmas and definitions have changed with respect to version 1.

    On equivalence, languages equivalence and minimization of multi-letter and multi-letter measure-many quantum automata

    Full text link
    We first show that given a k1k_1-letter quantum finite automata A1\mathcal{A}_1 and a k2k_2-letter quantum finite automata A2\mathcal{A}_2 over the same input alphabet Σ\Sigma, they are equivalent if and only if they are (n12+n221)Σk1+k(n_1^2+n_2^2-1)|\Sigma|^{k-1}+k-equivalent where n1n_1, i=1,2i=1,2, are the numbers of state in Ai\mathcal{A}_i respectively, and k=max{k1,k2}k=\max\{k_1,k_2\}. By applying a method, due to the author, used to deal with the equivalence problem of {\it measure many one-way quantum finite automata}, we also show that a k1k_1-letter measure many quantum finite automaton A1\mathcal{A}_1 and a k2k_2-letter measure many quantum finite automaton A2\mathcal{A}_2 are equivalent if and only if they are (n12+n221)Σk1+k(n_1^2+n_2^2-1)|\Sigma|^{k-1}+k-equivalent where nin_i, i=1,2i=1,2, are the numbers of state in Ai\mathcal{A}_i respectively, and k=max{k1,k2}k=\max\{k_1,k_2\}. Next, we study the language equivalence problem of those two kinds of quantum finite automata. We show that for kk-letter quantum finite automata, the non-strict cut-point language equivalence problem is undecidable, i.e., it is undecidable whether Lλ(A1)=Lλ(A2)L_{\geq\lambda}(\mathcal{A}_1)=L_{\geq\lambda}(\mathcal{A}_2) where 0<λ10<\lambda\leq 1 and Ai\mathcal{A}_i are kik_i-letter quantum finite automata. Further, we show that both strict and non-strict cut-point language equivalence problem for kk-letter measure many quantum finite automata are undecidable. The direct consequences of the above outcomes are summarized in the paper. Finally, we comment on existing proofs about the minimization problem of one way quantum finite automata not only because we have been showing great interest in this kind of problem, which is very important in classical automata theory, but also due to that the problem itself, personally, is a challenge. This problem actually remains open.Comment: 30 pages, conclusion section correcte

    Quantum, Stochastic, and Pseudo Stochastic Languages with Few States

    Full text link
    Stochastic languages are the languages recognized by probabilistic finite automata (PFAs) with cutpoint over the field of real numbers. More general computational models over the same field such as generalized finite automata (GFAs) and quantum finite automata (QFAs) define the same class. In 1963, Rabin proved the set of stochastic languages to be uncountable presenting a single 2-state PFA over the binary alphabet recognizing uncountably many languages depending on the cutpoint. In this paper, we show the same result for unary stochastic languages. Namely, we exhibit a 2-state unary GFA, a 2-state unary QFA, and a family of 3-state unary PFAs recognizing uncountably many languages; all these numbers of states are optimal. After this, we completely characterize the class of languages recognized by 1-state GFAs, which is the only nontrivial class of languages recognized by 1-state automata. Finally, we consider the variations of PFAs, QFAs, and GFAs based on the notion of inclusive/exclusive cutpoint, and present some results on their expressive power.Comment: A new version with new results. Previous version: Arseny M. Shur, Abuzer Yakaryilmaz: Quantum, Stochastic, and Pseudo Stochastic Languages with Few States. UCNC 2014: 327-33

    Minimal weight expansions in Pisot bases

    Get PDF
    For applications to cryptography, it is important to represent numbers with a small number of non-zero digits (Hamming weight) or with small absolute sum of digits. The problem of finding representations with minimal weight has been solved for integer bases, e.g. by the non-adjacent form in base~2. In this paper, we consider numeration systems with respect to real bases β\beta which are Pisot numbers and prove that the expansions with minimal absolute sum of digits are recognizable by finite automata. When β\beta is the Golden Ratio, the Tribonacci number or the smallest Pisot number, we determine expansions with minimal number of digits ±1\pm1 and give explicitely the finite automata recognizing all these expansions. The average weight is lower than for the non-adjacent form
    corecore