3,493 research outputs found

    Number-phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra

    Full text link
    In this letter, the number-phase entropic uncertainty relation and the number-phase Wigner function of generalized coherent states associated to a few solvable quantum systems with nondegenerate spectra are studied. We also investigate time evolution of number-phase entropic uncertainty and Wigner function of the considered physical systems with the help of temporally stable Gazeau-Klauder coherent states.Comment: 10 pages, 9 figures; To appear in Phys Lett A 200

    Entropic Uncertainty Relations in Quantum Physics

    Full text link
    Uncertainty relations have become the trademark of quantum theory since they were formulated by Bohr and Heisenberg. This review covers various generalizations and extensions of the uncertainty relations in quantum theory that involve the R\'enyi and the Shannon entropies. The advantages of these entropic uncertainty relations are pointed out and their more direct connection to the observed phenomena is emphasized. Several remaining open problems are mentionedComment: 35 pages, review pape

    Entropic uncertainty relations for extremal unravelings of super-operators

    Full text link
    A way to pose the entropic uncertainty principle for trace-preserving super-operators is presented. It is based on the notion of extremal unraveling of a super-operator. For given input state, different effects of each unraveling result in some probability distribution at the output. As it is shown, all Tsallis' entropies of positive order as well as some of Renyi's entropies of this distribution are minimized by the same unraveling of a super-operator. Entropic relations between a state ensemble and the generated density matrix are revisited in terms of both the adopted measures. Using Riesz's theorem, we obtain two uncertainty relations for any pair of generalized resolutions of the identity in terms of the Renyi and Tsallis entropies. The inequality with Renyi's entropies is an improvement of the previous one, whereas the inequality with Tsallis' entropies is a new relation of a general form. The latter formulation is explicitly shown for a pair of complementary observables in a dd-level system and for the angle and the angular momentum. The derived general relations are immediately applied to extremal unravelings of two super-operators.Comment: 8 pages, one figure. More explanations are given for Eq. (2.19) and Example III.5. One reference is adde

    Entanglement, Purity, and Information Entropies in Continuous Variable Systems

    Full text link
    Quantum entanglement of pure states of a bipartite system is defined as the amount of local or marginal ({\em i.e.}referring to the subsystems) entropy. For mixed states this identification vanishes, since the global loss of information about the state makes it impossible to distinguish between quantum and classical correlations. Here we show how the joint knowledge of the global and marginal degrees of information of a quantum state, quantified by the purities or in general by information entropies, provides an accurate characterization of its entanglement. In particular, for Gaussian states of continuous variable systems, we classify the entanglement of two--mode states according to their degree of total and partial mixedness, comparing the different roles played by the purity and the generalized p−p-entropies in quantifying the mixedness and bounding the entanglement. We prove the existence of strict upper and lower bounds on the entanglement and the existence of extremally (maximally and minimally) entangled states at fixed global and marginal degrees of information. This results allow for a powerful, operative method to measure mixed-state entanglement without the full tomographic reconstruction of the state. Finally, we briefly discuss the ongoing extension of our analysis to the quantification of multipartite entanglement in highly symmetric Gaussian states of arbitrary 1×N1 \times N-mode partitions.Comment: 16 pages, 5 low-res figures, OSID style. Presented at the International Conference ``Entanglement, Information and Noise'', Krzyzowa, Poland, June 14--20, 200

    A survey of uncertainty principles and some signal processing applications

    Full text link
    The goal of this paper is to review the main trends in the domain of uncertainty principles and localization, emphasize their mutual connections and investigate practical consequences. The discussion is strongly oriented towards, and motivated by signal processing problems, from which significant advances have been made recently. Relations with sparse approximation and coding problems are emphasized

    Multidimensional entropic uncertainty relation based on a commutator matrix in position and momentum spaces

    Full text link
    The uncertainty relation for continuous variables due to Byalinicki-Birula and Mycielski expresses the complementarity between two nn-uples of canonically conjugate variables (x1,x2,⋯xn)(x_1,x_2,\cdots x_n) and (p1,p2,⋯pn)(p_1,p_2,\cdots p_n) in terms of Shannon differential entropy. Here, we consider the generalization to variables that are not canonically conjugate and derive an entropic uncertainty relation expressing the balance between any two nn-variable Gaussian projective measurements. The bound on entropies is expressed in terms of the determinant of a matrix of commutators between the measured variables. This uncertainty relation also captures the complementarity between any two incompatible linear canonical transforms, the bound being written in terms of the corresponding symplectic matrices in phase space. Finally, we extend this uncertainty relation to R\'enyi entropies and also prove a covariance-based uncertainty relation which generalizes Robertson relation.Comment: 8 pages, 1 figur

    Continuous-variable entropic uncertainty relations

    Full text link
    Uncertainty relations are central to quantum physics. While they were originally formulated in terms of variances, they have later been successfully expressed with entropies following the advent of Shannon information theory. Here, we review recent results on entropic uncertainty relations involving continuous variables, such as position xx and momentum pp. This includes the generalization to arbitrary (not necessarily canonically-conjugate) variables as well as entropic uncertainty relations that take xx-pp correlations into account and admit all Gaussian pure states as minimum uncertainty states. We emphasize that these continuous-variable uncertainty relations can be conveniently reformulated in terms of entropy power, a central quantity in the information-theoretic description of random signals, which makes a bridge with variance-based uncertainty relations. In this review, we take the quantum optics viewpoint and consider uncertainties on the amplitude and phase quadratures of the electromagnetic field, which are isomorphic to xx and pp, but the formalism applies to all such variables (and linear combinations thereof) regardless of their physical meaning. Then, in the second part of this paper, we move on to new results and introduce a tighter entropic uncertainty relation for two arbitrary vectors of intercommuting continuous variables that take correlations into account. It is proven conditionally on reasonable assumptions. Finally, we present some conjectures for new entropic uncertainty relations involving more than two continuous variables.Comment: Review paper, 42 pages, 1 figure. We corrected some minor errors in V
    • 

    corecore