10,581 research outputs found

    On orthogonal tensors and best rank-one approximation ratio

    Full text link
    As is well known, the smallest possible ratio between the spectral norm and the Frobenius norm of an m×nm \times n matrix with m≤nm \le n is 1/m1/\sqrt{m} and is (up to scalar scaling) attained only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible ratio between spectral and Frobenius norms of n1×⋯×ndn_1 \times \dots \times n_d tensors of order dd, also called the best rank-one approximation ratio in the literature, is investigated. The exact value is not known for most configurations of n1≤⋯≤ndn_1 \le \dots \le n_d. Using a natural definition of orthogonal tensors over the real field (resp., unitary tensors over the complex field), it is shown that the obvious lower bound 1/n1⋯nd−11/\sqrt{n_1 \cdots n_{d-1}} is attained if and only if a tensor is orthogonal (resp., unitary) up to scaling. Whether or not orthogonal or unitary tensors exist depends on the dimensions n1,…,ndn_1,\dots,n_d and the field. A connection between the (non)existence of real orthogonal tensors of order three and the classical Hurwitz problem on composition algebras can be established: existence of orthogonal tensors of size ℓ×m×n\ell \times m \times n is equivalent to the admissibility of the triple [ℓ,m,n][\ell,m,n] to the Hurwitz problem. Some implications for higher-order tensors are then given. For instance, real orthogonal n×⋯×nn \times \dots \times n tensors of order d≥3d \ge 3 do exist, but only when n=1,2,4,8n = 1,2,4,8. In the complex case, the situation is more drastic: unitary tensors of size ℓ×m×n\ell \times m \times n with ℓ≤m≤n\ell \le m \le n exist only when ℓm≤n\ell m \le n. Finally, some numerical illustrations for spectral norm computation are presented

    Blind Multilinear Identification

    Full text link
    We discuss a technique that allows blind recovery of signals or blind identification of mixtures in instances where such recovery or identification were previously thought to be impossible: (i) closely located or highly correlated sources in antenna array processing, (ii) highly correlated spreading codes in CDMA radio communication, (iii) nearly dependent spectra in fluorescent spectroscopy. This has important implications --- in the case of antenna array processing, it allows for joint localization and extraction of multiple sources from the measurement of a noisy mixture recorded on multiple sensors in an entirely deterministic manner. In the case of CDMA, it allows the possibility of having a number of users larger than the spreading gain. In the case of fluorescent spectroscopy, it allows for detection of nearly identical chemical constituents. The proposed technique involves the solution of a bounded coherence low-rank multilinear approximation problem. We show that bounded coherence allows us to establish existence and uniqueness of the recovered solution. We will provide some statistical motivation for the approximation problem and discuss greedy approximation bounds. To provide the theoretical underpinnings for this technique, we develop a corresponding theory of sparse separable decompositions of functions, including notions of rank and nuclear norm that specialize to the usual ones for matrices and operators but apply to also hypermatrices and tensors.Comment: 20 pages, to appear in IEEE Transactions on Information Theor
    • …
    corecore