478 research outputs found

    Weighted Modulo Orientations of Graphs

    Get PDF
    This dissertation focuses on the subject of nowhere-zero flow problems on graphs. Tutte\u27s 5-Flow Conjecture (1954) states that every bridgeless graph admits a nowhere-zero 5-flow, and Tutte\u27s 3-Flow Conjecture (1972) states that every 4-edge-connected graph admits a nowhere-zero 3-flow. Extending Tutte\u27s flows conjectures, Jaeger\u27s Circular Flow Conjecture (1981) says every 4k-edge-connected graph admits a modulo (2k+1)-orientation, that is, an orientation such that the indegree is congruent to outdegree modulo (2k+1) at every vertex. Note that the k=1 case of Circular Flow Conjecture coincides with the 3-Flow Conjecture, and the case of k=2 implies the 5-Flow Conjecture. This work is devoted to providing some partial results on these problems. In Chapter 2, we study the problem of modulo 5-orientation for given multigraphic degree sequences. We prove that a multigraphic degree sequence d=(d1,..., dn) has a realization G with a modulo 5-orientation if and only if di≤1,3 for each i. In addition, we show that every multigraphic sequence d=(d1,..., dn) with min{1≤i≤n}di≥9 has a 9-edge-connected realization that admits a modulo 5-orientation for every possible boundary function. Jaeger conjectured that every 9-edge-connected multigraph admits a modulo 5-orientation, whose truth would imply Tutte\u27s 5-Flow Conjecture. Consequently, this supports the conjecture of Jaeger. In Chapter 3, we show that there are essentially finite many exceptions for graphs with bounded matching numbers not admitting any modulo (2k+1)-orientations for any positive integers t. We additionally characterize all infinite many graphs with bounded matching numbers but without a nowhere-zero 3-flow. This partially supports Jaeger\u27s Circular Flow Conjecture and Tutte\u27s 3-Flow Conjecture. In 2018, Esperet, De Verclos, Le and Thomass introduced the problem of weighted modulo orientations of graphs and indicated that this problem is closely related to modulo orientations of graphs, including Tutte\u27s 3-Flow Conjecture. In Chapter 4 and Chapter 5, utilizing properties of additive bases and contractible configurations, we reduced the Esperet et al\u27s edge-connectivity lower bound for some (signed) graphs families including planar graphs, complete graphs, chordal graphs, series-parallel graphs and bipartite graphs, indicating that much lower edge-connectivity bound still guarantees the existence of such orientations for those graph families. In Chapter 6, we show that the assertion of Jaeger\u27s Circular Flow Conjecture with k=2 holds asymptotically almost surely for random 9-regular graphs

    Contractors for flows

    Full text link
    We answer a question raised by Lov\'asz and B. Szegedy [Contractors and connectors in graph algebras, J. Graph Theory 60:1 (2009)] asking for a contractor for the graph parameter counting the number of B-flows of a graph, where B is a subset of a finite Abelian group closed under inverses. We prove our main result using the duality between flows and tensions and finite Fourier analysis. We exhibit several examples of contractors for B-flows, which are of interest in relation to the family of B-flow conjectures formulated by Tutte, Fulkerson, Jaeger, and others.Comment: 22 pages, 1 figur

    A note on nowhere-zero 3-flow and Z_3-connectivity

    Full text link
    There are many major open problems in integer flow theory, such as Tutte's 3-flow conjecture that every 4-edge-connected graph admits a nowhere-zero 3-flow, Jaeger et al.'s conjecture that every 5-edge-connected graph is Z3Z_3-connected and Kochol's conjecture that every bridgeless graph with at most three 3-edge-cuts admits a nowhere-zero 3-flow (an equivalent version of 3-flow conjecture). Thomassen proved that every 8-edge-connected graph is Z3Z_3-connected and therefore admits a nowhere-zero 3-flow. Furthermore, LovaËŠ\acute{a}sz, Thomassen, Wu and Zhang improved Thomassen's result to 6-edge-connected graphs. In this paper, we prove that: (1) Every 4-edge-connected graph with at most seven 5-edge-cuts admits a nowhere-zero 3-flow. (2) Every bridgeless graph containing no 5-edge-cuts but at most three 3-edge-cuts admits a nowhere-zero 3-flow. (3) Every 5-edge-connected graph with at most five 5-edge-cuts is Z3Z_3-connected. Our main theorems are partial results to Tutte's 3-flow conjecture, Kochol's conjecture and Jaeger et al.'s conjecture, respectively.Comment: 10 pages. Typos correcte

    An alternative proof of the nowhere-zero 6-flow theorem

    Get PDF
    The nowhere-zero 6-flow theorem of Seymour is proven by construction

    Integer flows and Modulo Orientations

    Get PDF
    Tutte\u27s 3-flow conjecture (1970\u27s) states that every 4-edge-connected graph admits a nowhere-zero 3-flow. A graph G admits a nowhere-zero 3-flow if and only if G has an orientation such that the out-degree equals the in-degree modulo 3 for every vertex. In the 1980ies Jaeger suggested some related conjectures. The generalized conjecture to modulo k-orientations, called circular flow conjecture, says that, for every odd natural number k, every (2k-2)-edge-connected graph has an orientation such that the out-degree equals the in-degree modulo k for every vertex. And the weaker conjecture he made, known as the weak 3-flow conjecture where he suggests that the constant 4 is replaced by any larger constant.;The weak version of the circular flow conjecture and the weak 3-flow conjecture are verified by Thomassen (JCTB 2012) recently. He proved that, for every odd natural number k, every (2k 2 + k)-edge-connected graph has an orientation such that the out-degree equals the in-degree modulo k for every vertex and for k = 3 the edge-connectivity 8 suffices. Those proofs are refined in this paper to give the same conclusions for 9 k-edge-connected graphs and for 6-edge-connected graphs when k = 3 respectively

    The Number of Nowhere-Zero Flows on Graphs and Signed Graphs

    Get PDF
    A nowhere-zero kk-flow on a graph Γ\Gamma is a mapping from the edges of Γ\Gamma to the set \{\pm1, \pm2, ..., \pm(k-1)\} \subset \bbZ such that, in any fixed orientation of Γ\Gamma, at each node the sum of the labels over the edges pointing towards the node equals the sum over the edges pointing away from the node. We show that the existence of an \emph{integral flow polynomial} that counts nowhere-zero kk-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polynomiality or quasipolynomiality of the flow counting functions, and reciprocity laws that interpret the evaluations of the flow polynomials at negative integers in terms of the combinatorics of the graph.Comment: 17 pages, to appear in J. Combinatorial Th. Ser.
    • …
    corecore