3 research outputs found

    Compact thermal models of semiconductor devices – a review

    Get PDF
    In the paper the problem of modelling thermal properties of semiconductor devices with the use of compact models is presented. This class of models is defined and their development over the past dozens of years is described. Possibilities of modelling thermal phenomena both in discrete semiconductor devices, monolithic integrated circuits, power modules and selected electronic circuits are presented. The problem of the usefulness range of compact thermal models in the analysis of electronic elements and circuits is discussed on the basis of investigations performed in Gdynia Maritime University

    Recent Advancements in Thermal Performance Enhancement in Microchannel Heatsinks for Electronic Cooling Application

    Get PDF
    Thermal management of electronic equipment is the primary concern in the electronic industry. Miniaturization and high power density of modern electronic components in the energy systems and electronic devices with high power density demanded compact heat exchangers with large heat dissipating capacity. Microchannel heat sinks (MCHS) are the most suitable heat exchanging devices for electronic cooling applications with high compactness. The heat transfer enhancement of the microchannel heat sinks (MCHS) is the most focused research area. Huge research has been done on the thermal and hydraulic performance enhancement of the microchannel heat sinks. This chapter’s focus is on advanced heat transfer enhancement methods used in the recent studies for the MCHS. The present chapter gives information about the performance enhancement MCHS with geometry modifications, Jet impingement, Phase changing materials (PCM), Nanofluids as a working fluid, Flow boiling, slug flow, and magneto-hydrodynamics (MHD)
    corecore