112 research outputs found

    A Method to Detect AAC Audio Forgery

    Get PDF
    Advanced Audio Coding (AAC), a standardized lossy compression scheme for digital audio, which was designed to be the successor of the MP3 format, generally achieves better sound quality than MP3 at similar bit rates. While AAC is also the default or standard audio format for many devices and AAC audio files may be presented as important digital evidences, the authentication of the audio files is highly needed but relatively missing. In this paper, we propose a scheme to expose tampered AAC audio streams that are encoded at the same encoding bit-rate. Specifically, we design a shift-recompression based method to retrieve the differential features between the re-encoded audio stream at each shifting and original audio stream, learning classifier is employed to recognize different patterns of differential features of the doctored forgery files and original (untouched) audio files. Experimental results show that our approach is very promising and effective to detect the forgery of the same encoding bit-rate on AAC audio streams. Our study also shows that shift recompression-based differential analysis is very effective for detection of the MP3 forgery at the same bit rate

    Steganography integration into a low-bit rate speech codec

    Get PDF
    Low bit-rate speech codecs have been widely used in audio communications like VoIP and mobile communications, so that steganography in low bit-rate audio streams would have broad applications in practice. In this paper, the authors propose a new algorithm for steganography in low bit-rate VoIP audio streams by integrating information hiding into the process of speech encoding. The proposed algorithm performs data embedding while pitch period prediction is conducted during low bit-rate speech encoding, thus maintaining synchronization between information hiding and speech encoding. The steganography algorithm can achieve high quality of speech and prevent detection of steganalysis, but also has great compatibility with a standard low bit-rate speech codec without causing further delay by data embedding and extraction. Testing shows, with the proposed algorithm, the data embedding rate of the secret message can attain 4 bits / frame (133.3 bits / second)

    Improved steganalysis technique based on least significant bit using artificial neural network for MP3 files

    Get PDF
    MP3 files are one of the most widely used digital audio formats that provide a high compression ratio with reliable quality. Their widespread use has resulted in MP3 audio files becoming excellent covers to carry hidden information in audio steganography on the Internet. Emerging interest in uncovering such hidden information has opened up a field of research called steganalysis that looked at the detection of hidden messages in a specific media. Unfortunately, the detection accuracy in steganalysis is affected by bit rates, sampling rate of the data type, compression rates, file track size and standard, as well as benchmark dataset of the MP3 files. This thesis thus proposed an effective technique to steganalysis of MP3 audio files by deriving a combination of features from MP3 file properties. Several trials were run in selecting relevant features of MP3 files like the total harmony distortion, power spectrum density, and peak signal-to-noise ratio (PSNR) for investigating the correlation between different channels of MP3 signals. The least significant bit (LSB) technique was used in the detection of embedded secret files in stego-objects. This involved reading the stego-objects for statistical evaluation for possible points of secret messages and classifying these points into either high or low tendencies for containing secret messages. Feed Forward Neural Network with 3 layers and traingdx function with an activation function for each layer were also used. The network vector contains information about all features, and is used to create a network for the given learning process. Finally, an evaluation process involving the ANN test that compared the results with previous techniques, was performed. A 97.92% accuracy rate was recorded when detecting MP3 files under 96 kbps compression. These experimental results showed that the proposed approach was effective in detecting embedded information in MP3 files. It demonstrated significant improvement in detection accuracy at low embedding rates compared with previous work

    MP3 audio steganography technique using extended least significant bit

    Get PDF
    Audio Steganography is the process of concealing secret messages into audio file. The goal for using audio steganography is to avoid drawing suspicion to the transmission of the secret message. Prior research studies have indicated that the main properties in steganography technique are imperceptibility, robustness and capacity. MP3 file is a popular audio media, which provides different compression rate and performing steganography in MP3 format after compression is the most desirable one. To date, there is not much research work that embeds messages after compression. An audio steganographic technique that utilizes Standard Least Significant Bits (SLSB) of the audio stream to embed secret message has gained popularity over the years. Unfortunately the technique suffers from imperceptibility, security and capacity. This research offers an extended Least Significant Bit (XLSB) technique in order to circumvent the weakness. The secret message is scrambled before embedding. Scrambling technique is introduced in two steps; partitioning the secret message (speech) into blocks followed by block permutation, in order to confuse the contents of the secret message. To enhance difficulty for attackers to retrieve the secret message, the message is not embedded in every byte of the audio file. Instead the first position of embedding bit is chosen randomly and the rest of the bits are embedded only in even value of bytes of the audio file. For extracting the secret message, the permutation code book is used to reorder the message blocks into its original form. Md5sum and SHA-256 are used to verify whether the secret message is altered or not during transmission. Experimental results measured by peak signal to noise ratio, bit error rate, Pearson Correlation and chi-square show that the XLSB performs better than SLSB. Moreover, XLSB can embed a maximum of 750KB into MP3 file with 30db average result. This research contributes to the information security community by providing more secure steganography technique which provides message confidentiality and integrity

    A Method to Detect AAC Audio Forgery

    Get PDF
    Article originally published in Endorsed Transactions on Security and SafetyAdvanced Audio Coding (AAC), a standardized lossy compression scheme for digital audio, which was designed to be the successor of the MP3 format, generally achieves better sound quality than MP3 at similar bit rates. While AAC is also the default or standard audio format for many devices and AAC audio files may be presented as important digital evidences, the authentication of the audio files is highly needed but relatively missing. In this paper, we propose a scheme to expose tampered AAC audio streams that are encoded at the same encoding bit rate. Specifically, we design a shift-recompression based method to retrieve the differential features between the re-encoded audio stream at each shifting and original audio stream, learning classifier is employed to recognize different patterns of differential features of the doctored forgery files and original (untouched) audio files. Experimental results show that our approach is very promising and effective to detect the forgery of the same encoding bit-rate on AAC audio streams. Our study also shows that shift recompression-based differential analysis is very effective for detection of the MP3 forgery at the same bit rateUS National Institute of Justice and from the US National Science Foundatio

    DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection

    Full text link
    The free access to large-scale public databases, together with the fast progress of deep learning techniques, in particular Generative Adversarial Networks, have led to the generation of very realistic fake content with its corresponding implications towards society in this era of fake news. This survey provides a thorough review of techniques for manipulating face images including DeepFake methods, and methods to detect such manipulations. In particular, four types of facial manipulation are reviewed: i) entire face synthesis, ii) identity swap (DeepFakes), iii) attribute manipulation, and iv) expression swap. For each manipulation group, we provide details regarding manipulation techniques, existing public databases, and key benchmarks for technology evaluation of fake detection methods, including a summary of results from those evaluations. Among all the aspects discussed in the survey, we pay special attention to the latest generation of DeepFakes, highlighting its improvements and challenges for fake detection. In addition to the survey information, we also discuss open issues and future trends that should be considered to advance in the field

    Computational intelligence in steganalysis environment

    Get PDF
    This paper presents gives a consolidated view of digital media steganalysis from the perspective of computational intelligence (CI). The environment of digital media steganalysis can be divided into three (3)domains which are image steganalysis, audio steganalysis, and video steganalysis. Three (3) major methods have also been identified in the computational intelligence based on these steganalysis domains which are bayesian, neural network, and genetic algorithm. Each of these methods has pros and cons. Therefore, it depends on the steganalyst to use and choose a suitable method based on their purposes and its environment

    Digital steganalysis: Computational intelligence approach

    Get PDF
    In this paper, we present a consolidated view of digital media steganalysis from the perspective of computational intelligence.In our analysis the digital media steganalysis is divided into three domains which are image steganalysis, audio steganalysis, and video steganalysis.Three major computational intelligence methods have also been identified in the steganalysis domains which are bayesian, neural network, and genetic algorithm.Each of these methods has its own pros and cons
    corecore