85 research outputs found

    Pilot-based channel estimation for AF relaying using energy harvesting

    Get PDF
    In existing channel estimators for amplify-andforward relaying, pilots are often sent from the relay to the destination which consumes the relay’s own energy. This limits the relay’s participation in the network. In this paper, several moment-based channel estimators for amplify-and-forward relaying are proposed that harvest energy from the source and using the harvested energy to send pilots to the destination for channel estimation. Both time-switching and power-splitting strategies are considered. Numerical results show that the two schemes that perform channel estimation only at the destination have worse performances than the two schemes that perform channel estimation at both the relay and the destination. They also show that the bit error rate performances of all schemes are close to the perfect case when exact knowledge of the channel state information is available such that there is no channel estimation error in the demodulation. The assumption that the two schemes only perform channel estimation at the destination makes them simpler, as they do not require channel estimation at the relay or feed the channel estimate back to the destination

    Performance analysis of energy harvesting relaying

    Get PDF
    Recently, energy harvesting has been exploited as a key technique in wireless communications. Because conventional wireless systems are powered by batteries and cables, they tend to have restricted lifetime and flexibility. In order to solve these problems, wireless power has been investigated as a replacement for conventional batteries. This thesis focuses on energy harvesting in relaying. The data packet from the source to relay contains three parts: pilot for channel estimation, data symbols and pilots for harvesting. The data packet from the relay to the destination contains two parts: data symbols and pilots for estimation. To study energy harvesting, the performance of wireless powered communications is evaluated in terms of achievable rate and bit error rate, for applications where the downlink and the uplink are correlated, in contrast to previous works that assume independent uplink and downlink. Semi-closed expressions for the achievable rate and series expressions for the bit error rate are derived in Nakagami m fading channels, based on which the effect of link correlation is examined. Numerical results show that the link correlation has a significant impact on the achievable rate. Consequently, the optimum system parameter for correlated links is very different from that for independent links, showing the usefulness of our results. Also, the link correlation has a noticeable effect on the bit error rate, depending on the system parameters considered. Then, performance analysis has been performed for an AF relaying system with pilot-based channel estimation and time switching (TS) energy harvesting is conducted. Numerical results show the existence of the optimal values of the numbers of pilots for channel estimation and for energy harvesting, when the total size is fixed. Next, three novel structures using simultaneous wireless information and power transfer in energy harvesting amplify-and-forward (AF) relaying are investigated. Different combinations of time-switching (TS) and power-splitting (PS) energy harvesting protocols are studied. Closed-form expressions for the cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio (SNR) for the three structures are derived. Using these expressions, achievable rate (AR) and bit-error-rate (BER) are derived. Different parameters are examined. Numerical results show the optimal splitting ratio for channel estimation, energy harvesting and data transmission, when the packet size is fixed. Finally, the energy from the source and the energy from the ambient are merged together. The three ambient structures are studied. The closed-form expressions for the cumulative distribution function (CDF) of the end-to-end signal-to- noise ratio (SNR) for the three ambient structures are derived. Curve fitting has been used to achieve the approximately achievable rate (AR) and bit-error-rate (BER). The results provide the optimal values for channel estimation pilots and power splitting ratio series for these ambient RF added structures

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Reconfigurable Intelligent Surfaces for Smart Cities: Research Challenges and Opportunities

    Get PDF
    The concept of Smart Cities has been introduced as a way to benefit from the digitization of various ecosystems at a city level. To support this concept, future communication networks need to be carefully designed with respect to the city infrastructure and utilization of resources. Recently, the idea of 'smart' environment, which takes advantage of the infrastructure for better performance of wireless networks, has been proposed. This idea is aligned with the recent advances in design of reconfigurable intelligent surfaces (RISs), which are planar structures with the capability to reflect impinging electromagnetic waves toward preferred directions. Thus, RISs are expected to provide the necessary flexibility for the design of the 'smart' communication environment, which can be optimally shaped to enable cost- and energy-efficient signal transmissions where needed. Upon deployment of RISs, the ecosystem of the Smart Cities would become even more controllable and adaptable, which would subsequently ease the implementation of future communication networks in urban areas and boost the interconnection among private households and public services. In this paper, we describe our vision of the application of RISs in future Smart Cities. In particular, the research challenges and opportunities are addressed. The contribution paves the road to a systematic design of RIS-assisted communication networks for Smart Cities in the years to come.Comment: Submitted for possible publication in IEEE Open Journal of the Communications Societ

    Hybrid Processing Design for Multipair Massive MIMO Relaying with Channel Spatial Correlation

    Get PDF
    Massive multiple-input multiple-output (MIMO) avails of simple transceiver design which can tackle many drawbacks of relay systems in terms of complicated signal processing, latency, and noise amplification. However, the cost and circuit complexity of having one radio frequency (RF) chain dedicated to each antenna element are prohibitive in practice. In this paper, we address this critical issue in amplify-and-forward (AF) relay systems using a hybrid analog and digital (A/D) transceiver structure. More specifically, leveraging the channel long-term properties, we design the analog beamformer which aims to minimize the channel estimation error and remain invariant over a long timescale. Then, the beamforming is completed by simple digital signal processing, i.e., maximum ratio combining/maximum ratio transmission (MRC/MRT) or zero-forcing (ZF) in the baseband domain. We present analytical bounds on the achievable spectral efficiency taking into account the spatial correlation and imperfect channel state information at the relay station. Our analytical results reveal that the hybrid A/D structure with ZF digital processor exploits spatial correlation and offers a higher spectral efficiency compared to the hybrid A/D structure with MRC/MRT scheme. Our numerical results showcase that the hybrid A/D beamforming design captures nearly 95% of the spectral efficiency of a fully digital AF relaying topology even by removing half of the RF chains. It is also shown that the hybrid A/D structure is robust to coarse quantization, and even with 2-bit resolution, the system can achieve more than 93% of the spectral efficiency offered by the same hybrid A/D topology with infinite resolution phase shifters.Comment: 17 pages, 13 figures, to appear in IEEE Transactions on Communication

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Performance Analysis in Full-Duplex Relaying Systems withWireless Power Transfer

    Get PDF
    Energy harvesting (EH) technology has become increasingly attractive as an appealing solution to provide long-lasting power for energy-constrained wireless cooperative sensor networks. EH in such networks is particularly important as it can enable information relaying. Different from absorbing energy from intermittent and unpredictable nature, such as solar, wind, and vibration, harvesting from radio frequency (RF) radiated by ambient transmitters has received tremendous attention. The RF signal can convey both information and energy at the same time, which facilitates the development of simultaneous wireless information and power transfer. Besides, ambient RF is widely available from the base station, WIFI, and mobile phone in the current information era. However, some open issues associated with EH are existing in the state-of-art. One of the key challenges is rapid energy loss during the transferring process, especially for long-distance transmission. The other challenge is the design of protocols to optimally coordinate between information and power transmission. Meanwhile, in-band full-duplex (IBFD) communication have gained considerable attraction by researchers, which has the ability to improve system spectral efficiency. IBFD can receive information and forward information at the same time on the same frequency. Since the RF signal can be superimposed, the antenna of the IBFD system receives the RF signal from both desired transmitter and local transmitter. Due to the short distance of the local transmission signals, the received signal power is much larger than the desired transmission signals, which results in faulty receiving of the desired signals. Therefore, it is of great significance to study the local self-interference cancellation method of the IBFD system. In the recent state-of-art, three main types of self-interference cancellations are researched, which are passive cancellations, digital cancellations, and analog cancellations. In this thesis, we study polarization-enabled digital self-interference cancellation (PDC) scheme in IBFD EH systems which cancels self-interference by antenna polarization (propagation domain) and digital processing (digital domain). The theme of this thesis is to address the following two questions: how the selfinterference would be canceled in the IBFD EH system and how to optimize key performances of the system to optimal system performances. This thesis makes five research contributions in the important area of IBFD relaying systems with wireless power transfer. Their applications are primarily in the domains of the Internet of Things (IoT) and 5G-and-beyond wireless networks. The overarching objective of the thesis is to construct analytical system models and evaluate system performance (outage probability, throughput, error) in various scenarios. In all five contributions, system models and analytical expressions of the performance metrics are derived, followed by computer simulations for performance analysis
    corecore