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Pilot-Based Channel Estimation for AF Relaying
Using Energy Harvesting

Yunfei Chen, Senior Member, IEEE, Wei Feng, Rui Shi, Ning Ge

Abstract— In existing channel estimators for amplify-and-
forward relaying, pilots are often sent from the relay to the
destination which consumes the relay’s own energy. This limits
the relay’s participation in the network. In this paper, several
moment-based channel estimators for amplify-and-forward relay-
ing are proposed that harvest energy from the source and using
the harvested energy to send pilots to the destination for channel
estimation. Both time-switching and power-splitting strategies
are considered. Numerical results show that the two schemes
that perform channel estimation only at the destination have
worse performances than the two schemes that perform channel
estimation at both the relay and the destination. They also show
that the bit error rate performances of all schemes are close
to the perfect case when exact knowledge of the channel state
information is available such that there is no channel estimation
error in the demodulation. The assumption that the two schemes
only perform channel estimation at the destination makes them
simpler, as they do not require channel estimation at the relay
or feed the channel estimate back to the destination.

Index Terms— Amplify-and-forward, channel estimation, en-
ergy harvesting, moments.

I. INTRODUCTION

In amplify-and-forward (AF) relaying, the amplification
and forwarding operations at the relay consume energy. This
may not be desirable for relays operating on batteries with
limited lifetime, and may discourage them from taking part in
relaying. To solve this problem, energy harvesting information
relaying has been proposed [1] - [3], where the relay harvests
energy from the source and uses only this energy to forward
the information signal.

Energy harvesting (EH) is one of the recent advances
in electronics. In particular, radio frequency (RF) energy
harvesting can provide wireless power [4]. Among different
RFEH techniques, far-field harvesting allows long-range en-
ergy transfer and therefore is suitable for communications
systems. However, due to the long range, the harvested energy
is often of milli-Watt or micro-Watt scale [5]. This restricts
application to low-power systems, such as sensor networks [6].
Consequently, in [7], the use of electromagnetic waves for both
information and energy transfer was studied. Two practical
schemes, time-switching (TS) and power-splitting (PS), were
studied in [8].
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Channel estimation is an essential part of wireless relaying,
as the destination needs the channel coefficients for demodu-
lation, and the relay sometimes needs them for amplification.
Several works have been conducted on channel estimation
for relaying, which mainly focused on the minimum mean
squared error (MMSE) estimation and the cascaded channel
estimation, such as in [9], [10] and [12]. In [11], a least
squares estimator was also proposed. In [13], the estimators
for individual channel coefficients were used. In [14], the
individual channel powers were estimated using moment-
based (MB) estimators. All the aforementioned estimators
were designed for conventional AF relaying, where the pilots
used by the estimators in [9] - [14] have to be sent from the
relay to the destination using the relay’s own energy. It would
be advantageous for the relay if the pilots could be sent without
using the relay’s own energy, that is, energy harvesting channel
estimation. In this case, new and greater challenges occur. Due
to energy harvesting, the cascaded channel coefficient is not
a simple product of the channel coefficients in the source-
to-relay and relay-to-destination links any more. Also, the
individual channel gains will be always coupled with each
other.

In this paper, new pilot-based channel estimators for AF
relaying are proposed. The pilots are sent from the relay to the
destination using energy harvested from the source. Channel
estimation is performed only using these pilots multiplexed
in the time domain with the data symbols for single-carrier
systems. Both TS and PS strategies are considered. In TS, the
source sends a group of pilots dedicated for energy harvesting
in the first part of the frame and another group dedicated for
channel estimation in the second part of the frame, while in PS,
the source only sends one group of pilots with each pilot split
in power for both energy harvesting and channel estimation.
Fig. 1 describes and compares TS and PS. In Scheme 1 and
Scheme 2, the relay harvests energy from the source and then
uses this energy to forward both pilots from the source and
its own pilots to the destination. In Scheme 3 and Scheme
4, the relay harvests energy from the source and also uses
these to estimate the source-to-relay link. Then, the harvested
energy is used to transmit its own pilot to the destination
for the estimation of the relay-to-destination link. Numerical
results are presented to show the good performances of these
proposed estimators. The difference between this work and the
previous works in [9] - [14] is that harvested energy is used for
channel estimation in this work while the previous works use
conventional battery energy. There are many works on energy
harvesting data transmission, such as [1] - [3]. However, these
use the harvested energy for information decoding but did not
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Fig. 1. Comparison of TS and PS strategies using the same
total number of pilots.

consider channel estimation.
This paper has two main technical contributions: First, it

is the first work to consider the use of energy harvesting for
channel estimation in relaying, an important part of relaying.
Previous works either considered the use of energy harvesting
in data relaying without designing any channel estimators
or designed channel estimators for data relaying without
any energy harvesting. Our work makes new contribution by
considering the use of energy harvesting for channel estimation
in relaying. Second, our work provides four estimators with
different performances and complexities, suitable for different
applications. Detailed derivations of these estimators are pre-
sented, and analytical expressions of their performances are
obtained. These results provide useful insights and important
guidance on how to choose the system parameters for best
performances. Thus, they make considerable contribution to
relaying system designs.

The remainder of the paper is organized as follows. Section
II derives the new estimators. In Section III, the first- and
second-order moments of the estimators will be analyzed. Sec-
tion IV will present numerical examples. Finally, concluding
remarks will be made in Section V.

II. NEW ESTIMATORS

Consider a wireless relaying network with one source, one
relay and one destination. The signal is transmitted from
the source to the destination via the relay. The following
assumptions are used in the paper.

A. Assumptions

• There is no direct link between the source and the
destination. This is the case when the destination is out
range of the source [15]. This is also the case when an
obstacle exists between the source and the destination
[16].

• All the nodes operate in half-duplex mode and have a
single antenna for simplicity. Multiple antennas would
incur more unknown channel coefficients and longer pilot
sequences and are thus more complicated. This can be a
future topic.

• All the schemes use time division protocol, where the
first part of the time duration is for source-to-relay

transmission and the second part of the time duration is
for relay-to-destination transmission.

• A total of K pilots are used in each scheme for energy
harvesting and channel estimation.

• Each pilot occupies a time duration of Tp.
• Block Rayleigh fading is used such that all channel

coefficients are complex Gaussian from block to block,
but remain constant during channel estimation in one
block.

• The pilot symbol has a value of 1 without loss of
generality.

• All noise are circularly symmetric and complex additive
white Gaussian noise (AWGN).

• For harvesting, the noise energy is small compared with
the harvested signal energy and thus, assumed negligible
(see the derivations of (5) - (13) in [8]).

• Fixed-gain relaying is used so that the amplification factor
is a constant that normalizes the average power of the
signal received at the relay [17], [18].

B. Scheme 1

In Scheme 1, the relay harvests energy from the source
using TS and then uses the harvested energy to forward pilots
from the source as well as transmit its own pilots to the
destination. Firstly, the source sends I pilots to the relay for
energy harvesting. The received signal at the relay is given by

y
(i)
r−eh =

√
Pshs+ n

(i)
r−eh (1)

where i = 1, 2, · · · , I , Ps is the source transmission power,
h is the channel coefficient of the source-to-relay link and
h is a complex Gaussian random variable with zero mean
and variance 2α2, s = 1 is the pilot value and is omitted
in the following, and nr−eh is the AWGN with zero mean
and variance 2σ2

r . Using (1), the harvested energy is

Eh = ηPs|h|2ITp (2)

where η is the conversion efficiency of the energy harvester
and ITp is the total harvesting time. Note that Ps|h|2 is the
amount of radiated power from the source picked up by the
harvester at its input. Due to path loss and fading, this amount
is often small. For example, reference [19] reported that the
input can be -8 dBm when the source radiates 4 Watts at a
distance of 15 meters, and reference [20] reported that the
input can be -11 dBm when the source radiates 0.32 Watts at
a distance of 1.1 meters.

Secondly, the source sends another J1 pilots to the relay,
which will be forwarded to the destination for channel esti-
mation. The received signal at the destination is

y
(j1)
d−s =

√
Prgay

(j1)
r−ce + n

(j1)
d−s, (3)

where y(j1)r−ce =
√
Psh + n

(j1)
r−ce is the forwarded signal, j1 =

1, 2, · · · , J1, n(j1)r−ce is the AWGN at the relay with mean zero
and variance 2σ2

r , Pr is the relay transmission power, g is
the channel coefficient of the relay-to-destination link and g
is a complex Gaussian random variable with zero mean and
variance 2α2, a is the amplification factor, and n

(j1)
d−s is the

AWGN at the destination with zero mean and variance 2σ2
d.
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Finally, in addition to forwarding J1 pilots from the source,
the relay also uses the harvested energy to transmit J2 pilots
of its own to the destination, giving

y
(j2)
d−r =

√
Prg + n

(j2)
d−r (4)

where j2 = 1, 2, · · · , J2, n(j2)d−r is the AWGN at the destination
during this transmission and is again complex Gaussian with
zero mean and variance 2σ2

d. Note that the relay transmits J2
pilots of its own to the destination after it forwards the J1
pilots from the source. Thus, they are orthogonal in time and
will not interfere. Using the harvested energy in (2), since the
relay has to forward J1 pilots from the source and transmit J2
pilots of its own, the transmission power of the relay in (3)
and (4) can be written as

Pr =
Eh
JTp

= ηPs|h|2
I

J
(5)

where J = J1 + J2. Note that (5) is obtained by dividing
the total harvested energy by the total transmission time. The
amplification factor a is used to normalize the average power
of the forwarded signal y(j1)r−ce [17], [18]. Thus, a2E{|y(j1)r−ce|2}
often gives one and they do not appear in J . Next, we derive
the new estimators for g and h. From (4), one has

y
(j2)
d−r =

√
η
I

J
Ps|h|g + n

(j2)
d−r (6)

and from (3), one has

y
(j1)
d−s =

√
η
I

J
Ps|h|gha+

√
η
I

J
Ps|h|gan(j1)r−ce + n

(j1)
d−s. (7)

It is well-known that the MB estimators are often simpler
than other estimators. In some cases, they also provide efficient
estimation [21]. Thus, they are considered first. The first-order
moments of (6) and (7) are

E{y(j2)d−r} =

√
η
I

J
Ps|h|g (8)

E{y(j1)d−s} =

√
η
I

J
Ps|h|gha. (9)

One can approximate E{y(j2)d−r} using 1
J2

∑J2
j2=1 y

(j2)
d−r, and

E{y(j1)d−s} using 1
J1

∑J1
j1=1 y

(j1)
d−s. Solving the equations in (8)

and (9) for g and h, one has the MB estimators for g and h
in Scheme 1 as

ĝ1 =
1
J2

∑J2
j2=1 y

(j2)
d−r|

1
J2

∑J2
j2=1 y

(j2)
d−r|

1
a

√
η IJ |

1
J1

∑J1
j1=1 y

(j1)
d−s|

(10)

ĥ1 =
1√
Psa

1
J1

∑J1
j1=1 y

(j1)
d−s

1
J2

∑J2
j2=1 y

(j2)
d−r

(11)

respectively. Note that other orders of moments can also be
used but the lower the order is, the better the MB estimator will
be in terms of variance [21]. Thus, we use the first order. Other
alternatives include the maximum likelihood (ML) method,
the least squares (LS) method and the MMSE method. The
ML estimator can be derived by maximizing the log-likelihood
function, which can be shown as a highly nonlinear function

of g and h. Thus, it does not lead to estimators as simple
as the MB estimators. For Gaussian noise, the LS method
normally gives the same estimator as the ML method. Also, the
MMSE is for time-selective channels, while we assume time-
non-selective channels here, and Thus, it is not applicable.
Since both y(j1)d−s and y(j2)d−r are received at the destination, the
relay does not perform channel estimation. This reduces the
complexity at the relay.

C. Scheme 2

Scheme 2 is similar to Scheme 1, except that the energy is
harvested using the PS strategy. Firstly, the source sends K1

pilots to the relay. Part of the received signal at the relay is
used for channel estimation, where z(k1)r−ce =

√
(1− ρ)Psh +

n
(k1)
r−ce is forwarded to the destination as

z
(k1)
d−s =

√
Prgaz

(k1)
r−ce + n

(k1)
d−s (12)

where k1 = 1, 2, · · · ,K1 index the pilots from the source,
ρ is the PS factor, n(k1)r−ce and n

(k1)
d−s are the AWGN with

zero means and variances 2σ2
r and 2σ2

d, respectively. The
other part of the received power at the relay is harvested as
Eh = ηρPs|h|2K1Tp.

Secondly, the relay also transmits K2 of its own pilots to
the destination such that the received signal at the destination
is

z
(k2)
d−r =

√
Prg + n

(k2)
d−r (13)

where k2 = 1, 2, · · · ,K2 and n
(k2)
d−r is the AWGN with zero

mean and variance 2σ2
d.

Since the relay forwards K1 pilots from the source and
transmits K2 pilots of its own, a total of K = K1 +K2 pilots
will be sent to the destination such that

Pr =
Eh
KTp

= ηρPs|h|2
K1

K
. (14)

Again, since a normalizes the average power of z(k1)r−ce, it does
not appear in K. Thus, one can substitute (14) in (13) to obtain

z
(k2)
d−r =

√
ηρPs

K1

K
|h|g + n

(k2)
d−r (15)

and one can substitute (14) in (12) as

z
(k1)
d−s =

√
ηρ(1− ρ)

K1

K
Ps|h|gha+

√
ηρPs

K1

K
|h|gan(k1)r−ce+n

(k1)
d−s.

(16)
The first-order moments of z(k2)d−r and z(k1)d−s are

E{z(k2)d−r} =

√
ηρPs

K1

K
|h|g (17)

E{z(k1)d−s} =

√
ηρ(1− ρ)

K1

K
Ps|h|gha. (18)

Thus, the MB estimators for g and h can be derived from (17)
and (18) as

ĝ2 =
a
√

1− ρ√
ηρK1

K

1
K2

∑K2

k2=1 z
(k2)
d−r |

1
K2

∑K2

k2=1 z
(k2)
d−r |

| 1
K1

∑K1

k1=1 z
(k1)
d−s |

(19)
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and

ĥ2 =
1√

(1− ρ)Psa

1
K1

∑K1

k1=1 z
(k1)
d−s

1
K2

∑K2

k2=1 z
(k2)
d−r

(20)

respectively. Again, the ML estimators are too complicated and
not derived here. Also, only the destination needs to perform
channel estimation and thus reduces complexity at the relay.

D. Scheme 3

In Scheme 3, firstly, the source sends J1 pilots to the relay
such that the received signal at the relay is

u
(j1)
r−ce =

√
Psh+ n

(j1)
r−ce (21)

where j1 = 1, 2, · · · , J1 and n
(j1)
r−ce is the AWGN with

zero mean and variance 2σ2
r . Secondly, the source sends

I pilots to the relay for energy harvesting. The harvested
energy Eh = ηPs|h|2ITp. Finally, the relay uses the harvested
energy to transmit J2 pilots of its own to the destination. The
transmission power of the relay is Pr = Eh

J2Tp
= ηPs|h|2 I

J2
and the received signal at the destination is

u
(j2)
d−r =

√
ηPs

I

J2
|h|g + n

(j2)
d−r (22)

where j2 = 1, 2, · · · , J2. Again, the relay transmits J2 pilots
of its own to the destination after it forwards the J1 pilots
from the source. Thus, they are orthogonal in time and will
not interfere. From (21) and (22), one has

E{u(j1)r−ce} =
√
Psh (23)

E{u(j2)d−r} =

√
ηPs

I

J2
|h|g. (24)

Thus, the MB estimators are derived by solving (23) and (24)
as

ĝ3 =
1
J2

∑J2
j2=1 u

(j2)
d−r√

η I
J2
| 1J1

∑J1
j1=1 u

(j1)
r−ce|

(25)

and

ĥ3 =
1√
Ps

1

J1

J1∑
j1=1

u
(j1)
r−ce. (26)

Note that, in this scheme, the relay estimates h and its estimate
has to be fed back to the destination via control channels for
the estimation of g at the destination. Thus, this scheme is
more complicated than Scheme 1 and Scheme 2.

E. Scheme 4

Scheme 4 is similar to Scheme 3, except the relay uses PS
to harvest energy. Firstly, the source sends K1 pilots to the
relay, part of which is received for channel estimation as

v
(k1)
r−ce =

√
(1− ρ)Psh+ n

(k1)
r−ce (27)

for k1 = 1, 2, · · · ,K1 and part of which is harvested with
Eh = ηρPs|h|2K1Tp. Secondly, the relay uses the harvested

energy to transmit K2 pilots of its own such that the received
signal at the destination is

v
(k2)
d−r =

√
ηρPs

K1

K2
|h|g + n

(k2)
d−r (28)

for k2 = 1, 2, · · · ,K2.
Similarly, using (27) and (28), the MB estimators for g and

h can be derived as

ĝ4 =
1
K2

∑K2

k2=1 v
(k2)
d−r√

ηK1

K2

ρ
1−ρ |

1
K1

∑K1

k1=1 v
(k1)
r−ce|

(29)

and

ĥ4 =
1√

(1− ρ)Ps

1

K1

K1∑
k1=1

v
(k1)
r−ce. (30)

III. ESTIMATOR PERFORMANCE

In this section, we derive the first- and second-order mo-
ments of the estimates to examine the performances of the
new estimators.

A. Scheme 1

For Scheme 1, denote yr = 1
J2

∑J2
j2=1 y

(j2)
d−r = ryre

jθyr and
ys = 1

J1

∑J1
j1=1 y

(j1)
d−s = ryse

jθys . One sees that yr and ys
are complex Gaussian random variables with means Syr =√
η IJPs|h|g and Sys =

√
η IJPs|h|gha, and variances 2β2

yr =
2σ2
d

J2
and 2β2

ys = 2
J1

(σ2
d + η IJPs|h|

2|g|2a2σ2
r), respectively.

Thus, ryr and rys are Rician random variables.
From (10), one has

E{ĝ1} =
a√
η IJ

E{r2yre
jθyr }E{ 1

rys
} (31)

where E{r2yre
jθyr } =

3β2
yr
e
−
|Syr |

2

2β2yr

π

∫ 2π

0
e
jθyr+

|Syr |
2 cos2(θyr+ε)

4β2yr

D−4(− |Syr | cos(θyr+ε)βyr
)dθyr , using [22, eq. (3.462.1)] and

[23, eq. (A.29)], and E{ 1
rys
} =

√
πe
−
|Sys |

2

4β2ys√
2β2
ys

I0(
|Sys |

2

4β2
ys

), using

[22, eq. (6.618.4)] and [23, eq. (2.45)], ε is the negative of the
phase angle of g, D−4(·) is the parabolic cylinder function
[22, eq. (9.240)] and I0(·) is the zero-th order modified
Bessel function of the first kind [22, eq. (8.406.1)]. One sees
that, when σ2

d is negligible, |Sys |
2

β2
ys

≈ J1Ps|h|2
2σ2
r

. Thus, when
J1 or the signal-to-noise ratio (SNR) in the source-to-relay
link Ps|h|2

2σ2
r

increases, E{ 1
rys
} decreases rapidly due to the

exponential and Bessel functions. This reduces the mean of
ĝ1 in (31).

Also, from (11), one has

E{ĥ1} =
Sys√
Psa

E{ 1

ryr
e−jθyr } (32)

where E{ 1
ryr

e−jθyr } = 1√
2πβ2

yr

∫ 2π

0
e
−jθyr−

|Syr |
2 sin2(θyr+ε)

2β2yr

Q(−|Syr | cos(θyr + ε)/βyr )dθyr and Q(·) is the Gaussian

Q function. One has |Syr |
2

β2
yr

=
η
J2I
J Ps|h|2|g|2

2σ2
d

and Sys√
Psa

=
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√
η IJPs|h|gh. Thus, from (32), when J2 increases or σ2

d

decreases, E{ 1
ryr

e−jθyr } decreases such that the mean of ĥ1
reduces. The mean of ĥ1 does not depend on a. Both ĝ1 and
ĥ1 are biased estimators. The second-order moments can be
derived as follows.

From (10), one has

E{|ĝ1|2} =
a2

η IJ
E{r4yr}E{

1

r2ys
} (33)

where E{r4yr} = 2(2β2
yr )

2 + 4(2β2
yr )|Syr |

2 + |Syr |4 us-
ing moments of a Rician random variable and E{ 1

r2ys
} =∫∞

0
1

β2
ys
xe
− x

2+|Sys |
2

2β2ys I0(
x|Sys |
β2
ys

)dx, using [23, eq. (2.45)]. Also,
from (11), one has

E{|ĥ1|2} =
1

Psa2
E{r2ys}E{

1

r2yr
} (34)

where E{r2ys} = 2β2
ys + |Sys |2 and E{ 1

r2yr
} =∫∞

0
1

β2
yr
xe
− x

2+|Syr |
2

2β2yr I0(
x|Syr |
β2
yr

)dx. One can see from (33) and
(34) that the second-order moment of ĝ1 decreases with J2,
while the second-order moment of ĥ1 decreases with J1 and
a2, respectively.

B. Scheme 2

In this subsection, we derive the first- and second-order
moments of ĝ2 and ĥ2. Denote zr = 1

K2

∑K2

k2=1 z
(k2)
d−r =

rzre
jθzr and zs = 1

K1

∑K1

k1=1 z
(k1)
d−s = rzse

jθzs , which are

complex Gaussian with means Szr =
√
ηρPs

K1

K |h|g and

Szs =
√
ηρ(1− ρ)K1

K Ps|h|gha, and variances 2β2
zr =

2σ2
d

K2

and 2β2
zs = 2

K1
(σ2
d + ηρPs|h|2|g|2a2σ2

r
K1

K ), respectively.
From (19) and (20), the first-order moments can be derived

as

E{ĝ2} =
a√
ηK1

K

√
1− ρ
ρ

E{r2zre
jθzr }E{ 1

rzs
} (35)

E{ĥ2} =

√
ηρPs

K1

K
|h|ghE{ 1

rzr
e−jθzr } (36)

where E{ 1
rzr
e−jθzr }, E{r2zre

jθzr } and E{ 1
rzs
} are obtained

by replacing Syr , βyr , Sys and βys with Szr , βzr , Szs and
βzs in E{ 1

ryr
e−jθyr }, E{r2yre

jθyr } and E{ 1
rys
}, respectively.

Similar insights can be obtained. Again, both ĝ2 and ĥ2 are
biased estimators. The mean of ĝ2 decreases when K1 or the
SNR of the source-to-relay link increase, and the mean of ĥ2
decreases when K2 increases or σ2

d decreases.
For the second-order moments, one has

E{|ĝ2|2} =
a2

ηK1

K

1− ρ
ρ

E{r4zr}E{
1

r2zs
} (37)

and
E{|ĥ2|2} =

1

(1− ρ)Psa2
E{r2zs}E{

1

r2zr
} (38)

where E{r4zr}, E{
1
r2zs
}, E{r2zs} and E{ 1

r2zr
} are derived by

replacing Syr , βyr , Sys and βys with Szr , βzr , Szs and βzs in

E{r4yr}, E{
1
r2ys
}, E{r2ys} and E{ 1

r2yr
}, respectively. Thus, the

second-order moment of ĝ2 decreases when a2 or σ2
d decrease

or when K2 increases, and the second-order moment of ĥ2
decreases when a2 increases for small σ2

d.

C. Scheme 3

In Scheme 3, we denote ur = 1
J2

∑J2
j2=1 u

(j2)
d−r = rure

jθur

and us = 1
J1

∑J1
j1=1 u

(j1)
r−ce = ruse

jθus . Then, ur and us
are complex Gaussian random variables with means Sur =√
ηPs

I
J2
|h|g and Sus =

√
Psh, and variances 2β2

ur =
2σ2
d

J2

and 2β2
us =

2σ2
r

J1
.

In this case, one has

E{ĝ3} =
√
Ps|h|gE{

1

rus
} (39)

E{ĥ3} = h (40)

E{|ĝ3|2} =
J2
ηI
E{r2ur}E{

1

r2us
} (41)

E{|ĥ3|2} =
2σ2

r

PsJ1
+ |h|2. (42)

where E{r2ur} = 2β2
ur + |Sur |2, E{ 1

rus
} and E{ 1

r2us
} can

be obtained by replacing Sys and βys with Sus and βus
in E{ 1

rys
} and E{ 1

r2ys
}, respectively. One sees from (40)

that ĥ3 is an unbiased estimator. On the other hand, ĝ3 is
biased but becomes unbiased if the estimate is divided by√
Ps|h|E{ 1

rus
}, which is a function of h only. When J1 or

the SNR of the source-to-relay link increase, the mean of
ĝ3 decreases. Also, the second-order moment of ĝ3 decreases
when σ2

d decreases or when η and I increase, while the second-
order moment of ĥ3 decreases when σ2

r decreases or when Ps
and J1 increase.

D. Scheme 4

In Scheme 4, let vr = 1
K2

∑K2

k2=1 v
(k2)
d−r = rvre

jθvr and
vs = 1

K1

∑K1

k1=1 v
(k1)
r−ce = rvse

jθvs so that vr is a complex

Gaussian random variable with mean Svr =
√
ηρPs

K1

K2
|h|g

and variance 2β2
vr =

2σ2
d

K2
, and vs is a complex Gaussian

random variable with mean Svs =
√

(1− ρ)Psh and variance
2β2

vs =
2σ2
r

K1
.

Then, following similar procedures, one has

E{ĝ4} =
√

(1− ρ)Ps|h|gE{
1

rvs
}, (43)

E{ĥ4} = h, (44)

E{|ĝ4|2} =
2σ2

d + ηK1ρPs|h|2|g|2

ηK1ρ/(1− ρ)
E{ 1

r2vs
}, (45)

E{|ĥ4|2} =
2σ2

r

(1− ρ)PsK1
+ |h|2, (46)

where E{ 1
rvs
} and E{ 1

r2vs
} are obtained by replacing Sys and

βys with Svs and βvs in E{ 1
rys
} and E{ 1

r2ys
}, respectively.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. X, XXXX XXXX 6

Again, ĥ4 is unbiased and ĝ4 is biased. However, it can become
unbiased by dividing the estimate by both Svs and E{ 1

rvs
}.

Also, one sees that ĝ4 does not depend on η. The TS and
PS strategies can be compared using their variances. One can
derive that V ar{ĝ3} =

2σ2
d

ηI E{
1
r2us
} + Ps|h|2|g|2(E{ 1

r2us
} −

E2{ 1
rus
}) and V ar{ĥ3} =

2σ2
r

PsJ1
for TS, and V ar{ĝ4} =

2σ2
d(1−ρ)
ηK1ρ

E{ 1
r2vs
}+(1−ρ)Ps|h|2|g|2(E{ 1

r2vs
}−E2{ 1

rvs
}) and

V ar{ĥ3} =
2σ2
r

(1−ρ)PsK1
for PS, where E{ 1

r2us
} is similar

to E{ 1
r2vs
} and E{ 1

rus
} is similar to E{ 1

rvs
} except that

E{ 1
r2us
} and E{ 1

rus
} are determined by |Sus |

2

2β2
us

= J1Ps|h|2
2σ2
r

while E{ 1
r2vs
} and E{ 1

rvs
} are determined by |Svs |

2

2β2
vs

=

K1(1−ρ)Ps|h|2
2σ2
r

. Thus, the performances of the TS and PS
strategies depend on the choice of parameters. For example,
if J1 > (1− ρ)K1, the variance of ĥ3 for TS will be smaller
than that of ĥ4 for PS, but otherwise PS will outperform TS.
Also, if J1 = K1 and (1 − ρ)Ps in PS is chosen to be the
same as Ps in TS, the variance of ĝ3 for TS will be smaller
than that of ĝ4 for PS when I > K1ρ/(1− ρ) and vice versa.

The above analytical expressions can be used to calculate
the MSE and the bias of the estimators, as the bias is deter-
mined by the first-order moment and the MSE is determined
by the first-order and the second-order moments. The 1D
integrals in these results can be easily and quickly calculated
using standard mathematical software, such as MATLAB and
Mathematica, in less than one second. In contrast, simulation
of a smooth MSE curve often takes minutes or hours. Also,
these analytical expressions give insights into the estimator
performance. For example, the bias of ĝ1 and the bias of ĝ2
do not depend on the fading phase of ys and zs, respectively,
and ĥ1 and ĥ2 are asymptotically unbiased when the signal-to-
noise ratio is large. Thus, these expressions are useful. All the
above equations are newly derived, not from the literature. One
can see that the derivation of the estimators in Section II and
the performance analysis of the derived estimators in Section
III are neither simple nor straightforward. They are novelty.
The proposed estimators are simple but provide very high
accuracy, as will be seen in the next section. The contribution
of our work is to provide simple estimators with excellent
performance.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, the MSE and uncoded bit error rate (BER)
performances of the newly derived estimators will be exam-
ined. In the examination, we fix η = 0.5, Ps = 1, K =
100 and 2σ2

r = 2σ2
d = 2 to focus on the more important

parameters. Define γg = |g|2
2σ2
d

as the instantaneous SNR of the

relay-to-destination link, and γh = |h|2
2σ2
r

as the instantaneous
SNR of the source-to-relay link. Their corresponding average
SNRs are γ̄g = E{|g|2}

2σ2
d

and γ̄h = E{|h|2}
2σ2
r

, respectively. The
value of a is set to normalize the power of the forwarded
signal [17], [18]. For fixed channel realization, the values of
g and h will be changed with γg and γh and their real and
imaginary parts will be equal to each other. The normalized
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Fig. 2. Normalized MSE of ĝ1 and ĥ1 vs. I and J2 for
γg = γh = 10 dB with fixed channel realization in Scheme 1.

mean squared error (MSE) is defined as 1
R|g|2

∑R
r=1 |ĝr−g|2,

1
R|h|2

∑R
r=1 |ĥr − h|2, and 1

R|gh|2
∑R
r=1 |ĝrĥr − gh|2 for ĝ,

ĥ and ĝĥ, respectively, where R is the total number of
simulation runs and ĝr and ĥr are the channel estimates in
the r-th run. For different channel realizations, the values
of E{|g|2} and E{|h|2} will change with γ̄g and γ̄h, as-
suming γ̄g = γ̄h = γa as the average power for Rayleigh
fading coefficients. The average normalized MSE is defined as

1
QR|gq|2

∑R
r=1

∑Q
q=1 |ĝr,q−gq|2, 1

QR|hq|2
∑R
r=1

∑Q
q=1 |ĥr,q−

hq|2, and 1
QR|gqhq|2

∑R
r=1

∑Q
q=1 |ĝr,qĥr,q − gqhq|2, where Q

is the number of channel realizations, and ĝr,q and ĥr,q are
the channel estimates in the r-th run of the q-th channel
realization. The average BER for different channel realizations
will also be studied for binary phase shift keying (BPSK)
as BER = 1

QR

∑R
r=1

∑Q
q=1 I(Re{yr,q ĝ∗r,qĥ∗r,q} < 0), where

yr,q =
√
Psgha+ ganrr,q + ndr,q is the received data signal at

the destination, I(·) is the indicator function with I(x) = 1
when x is true, and nrr,q and ndr,q are the AWGN at the relay
and the destination, respectively, in the r-th run of the q-th
channel realization. In the figures, the normalized MSE and
BER in the y axis are in log scale, and the SNR in the x axis
is in dB scale.

Fig. 2 shows the normalized MSE of ĝ1 and ĥ1 in Scheme
1 versus the values of I and J2, when γg = γh = 10 dB with
fixed channel realization. In Fig. 2.(a), we set J1 = J2 = J

2
to focus on I from 4 to 96 with a step size of 4. In Fig. 2.(b),
we set I = 38 to focus on J2 from 2 to J −2 with a step size
of 2. Two observations can be made. Firstly, from Fig. 2, the
normalized MSE first decreases and then increases when the
values of I or J2 increase, as expected, as a larger value of
I leads to more harvested energy such that the estimation at
the destination node will be more accurate. It also leads to a
smaller value of J due to a fixed K such that the sample size
in the estimation reduces. Also, a larger value of J2 leads to
a better estimate of 1

J2

∑J2
j2=1 y

(j2)
d−r but due to fixed J it also

leads to a worse estimate of 1
J1

∑J1
j1=1 y

(j1)
d−s. The optimum

values of I and J2 can be found in this case. Moreover,
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Fig. 3. Normalized MSE of ĝ2 and ĥ2 vs. ρ and K2 for
γg = γh = 10 dB with fixed channel realization in Scheme 2.
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γg = γh = 10 dB with fixed channel realization in Scheme 3.
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ĝ4

ĥ4
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γg = γh = 10 dB with fixed channel realization in Scheme 4
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Fig. 7. The average normalized MSEs of ĝ and ĥ vs. γa for
different schemes over different channel realizations.

there is a wide range of choices for I and J2 that give close-
to-optimum performances. This provides flexibility in system
design. Secondly, the performance of ĝ1 is close to that of ĥ1,
especially near the optimum values of I and J2.

Fig. 3 shows the normalized MSE of ĝ2 and ĥ2 versus ρ
and K2, for ĝ2 = ĥ2 = 10 dB in Scheme 2. In Fig. 3.(a),
the value of ρ is varied from 0.1 to 0.9 with a step size of
0.1, when K1 = K2 = K

2 . In Fig. 3.(b), the value of K2 is
examined from 4 to 96 with a step size of 4, when ρ = 0.4.
In this figure, the optimum value of ρ exists. For ρ, when it is
large, more energy is harvested for relay transmission but the
signal component in the samples will be weaker, leading to
more estimation errors. Thus, a balanced choice of ρ needs to
be made and it plays a similar role to I

K in Scheme 1. Also,
compared with Fig. 2, there is a wider range of choices for
K2 that can achieve close-to-optimum performance.

Fig. 4 shows the normalized MSE of ĝ3 and ĥ3 versus I
and J1 in Scheme 3. In Fig. 4.(a), the value of I is varied from
4 to 96 with a step size of 4, when J1 = J2 = J

2 . Also, in
Fig. 4.(b), the value of J1 is examined from 2 to J −2 with a
step size of 2, while I = 16. From this figure, the normalized
MSE monotonically increases with I and decreases with J1 in
most cases. Also, ĝ3 has a smaller normalized MSE than ĥ3
in most cases. Fig. 5 shows the normalized MSE versus ρ and
K1 in Scheme 4. As can be seen from Fig. 5, the normalized
MSE increases with ρ and decreases with K1.

Fig. 6 compares the estimators in terms of their minimum
normalized MSEs of ĝĥ in fixed channel realization achieved
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Fig. 9. Diagrams of different energy harvesting channel
estimation schemes.

by performing exhaustive searches over the relevant param-
eters. One sees that Scheme 3 and Scheme 4 outperform
Scheme 1 and Scheme 2 in this case.

Figs. 7 and 8 show the average normalized MSE and average
BER vs. γa over different channel realizations, respectively. In
these figures, I = 40 and J2 = 20 for Scheme 1, ρ = 0.5 and
K2 = 20 for Scheme 2, I = 16 and J1 = 64 for Scheme
3, ρ = 0.2 and K1 = 80 for Scheme 4. These values may
not be optimum but are fixed to have reasonable calculation
time. One sees that the average normalized MSE and average
BER always decrease when γa increases. For the average
normalized MSE, ĥ is better than ĝ, and Scheme 1 and Scheme
2 are worse than Scheme 3 and Scheme 4. For the average
BER, all the estimators have performances very close to the
perfect case when there is no channel estimation error in the
demodulation. Scheme 3 and Scheme 4 have slightly smaller
average BER than Scheme 1 and Scheme 2, which agrees with
the observations in Fig. 7.(a) for different channel realizations.

Fig. 9 compares the different characteristics of the proposed
schemes. In summary, Scheme 1 uses TS and only performs
channel estimation at the destination, Scheme 2 uses PS and
only performs channel estimation at the destination, Scheme
3 uses TS and performs channel estimation at both the relay
and the destination, while Scheme 4 uses PS and performs
channel estimation at both the relay and the destination.
Among the proposed schemes, Scheme 1 and Scheme 2

have minimum energy and complexity requirements on the
relay, as the energy is supplied by the source and the relay
does not perform channel estimation either. Thus, they are
suitable for machine-to-machine communications [24], where
the relay is a peer node sensitive to both energy and complexity
requirements. On the other hand, Scheme 3 and Scheme 4 are
suitable for infrastructure-based relaying, where the relay is
a fixed node and is not sensitive to complexity [25]. Thus,
the motivation of providing all these schemes are two-fold.
From the performance’s perspective, Scheme 3 and Scheme
4 are better than Scheme 1 and Scheme 2. For example, in
Fig. 6.(a), Scheme 1 and Scheme 2 have a normalized MSE of
about 2×10−4 at γg = 10 dB, while Scheme 3 and Scheme 4
have a normalized MSE of about 1×10−4, only half of that for
Scheme 1 and Scheme 2. In Fig. 7.(a), Scheme 3 and Scheme 4
have an average normalized MSE of 0.1 at γa = 10 dB, much
smaller than the average normalized MSE of 0.6 for Scheme 1
and Scheme 2. These performance differences are significant.
Even for the BER performance, in Fig. 8 at BER = 10−2,
Scheme 3 and Scheme 4 have a considerable gain of around
0.2 dB over Scheme 1 and Scheme 2. From the complexity’s
perspective, Scheme 1 and Scheme 2 are simpler than Scheme
3 and Scheme 4, as they do not perform channel estimation
at the relay and they do not need to feed the channel estimate
to the destination either. These differences in performance
and complexity allow the estimators to be used in different
applications that have different requirements, such as machine-
to-machine communications and infrastructure-based relaying,
which motivate us to consider all of them.

The theoretical values for the optimum I , J1, J2, K1,
K2 and ρ could be calculated by deriving the analytical
expressions of the performance measures and optimizing these
performance measures. However, such calculation is very
difficult, if not impossible. Thus, we rely on an exhaustive
search to find these values. Nevertheless, from Figs. 2 - 5,
the performance is not very sensitive to the choices of these
parameters and there is often a wide range of choices that
provide close-to-optimum performance. This does not mean
that the performance is not sensitive to the overall sample
size K.

V. CONCLUSION

New pilot-based MB estimators for AF relaying have been
proposed that use energy harvesting. Numerical results have
been presented to show their performances. In terms of com-
plexity, Scheme 1 and Scheme 2 are the simplest, as they
require neither channel estimation at the relay nor channel
estimate feedback to the destination while Scheme 3 and
Scheme 4 do have these extra requirements. In terms of MSE
performance, Scheme 3 and Scheme 4 have the smallest MSE.
In terms of BER performance, all schemes are close to the
perfect case, while Scheme 3 and Scheme 4 are slightly better
than Scheme 1 and Scheme 2. These conclusions are made
from Figs. 6 - 8 based on the specific settings given in the first
paragraph of the previous section. However, they may not be
general for all scenarios. Note that the proposed estimators use
pilots only. This is similar to some previous work in [9] - [14].
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Thus, no data symbols are available for energy harvesting in
the estimation. One could extend this scheme to blind or semi-
blind estimation, enabling energy to be harvested from data
symbols. One could also consider optimal power allocation
with respect to the ratio of pilots to data symbols in a frame
with fixed length [26], [27]. Furthermore, one could assume
a direct link between source and destination and compare the
performance with indirect relaying. Finally, when the relay
sends pilots to the destination, it can also harvest energy
from its own transmitted pilots. However, this requires a more
complicated full-duplex radio that can perform transmission
and reception at the same time [28], [29]. This work only
considers half-duplex radio that is widely used in wireless
systems, and in this case the relay cannot harvest energy from
its own transmitted pilots.
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