24,177 research outputs found

    Novel paradigms for advanced distribution grid energy management

    Get PDF
    The electricity distribution grid was not designed to cope with load dynamics imposed by high penetration of electric vehicles, neither to deal with the increasing deployment of distributed Renewable Energy Sources. Distribution System Operators (DSO) will increasingly rely on flexible Distributed Energy Resources (flexible loads, controllable generation and storage) to keep the grid stable and to ensure quality of supply. In order to properly integrate demand-side flexibility, DSOs need new energy management architectures, capable of fostering collaboration with wholesale market actors and pro-sumers. We propose the creation of Virtual Distribution Grids (VDG) over a common physical infrastructure , to cope with heterogeneity of resources and actors, and with the increasing complexity of distribution grid management and related resources allocation problems. Focusing on residential VDG, we propose an agent-based hierarchical architecture for providing Demand-Side Management services through a market-based approach, where households transact their surplus/lack of energy and their flexibility with neighbours, aggregators, utilities and DSOs. For implementing the overall solution, we consider fine-grained control of smart homes based on Inter-net of Things technology. Homes seamlessly transact self-enforcing smart contracts over a blockchain-based generic platform. Finally, we extend the architecture to solve existing problems on smart home control, beyond energy management

    Smart home energy management

    Get PDF
    The new challenges on Information and Communication Technologies (ICT) in Automatic Home Systems (AHS) focus on the methods useful to monitor, control, and optimize the data management flow and the use of energy. An AHS is a residential dwelling, in some cases with a garden or an outdoor space, equipped with sensors and actuators to collect data and send controls according to the activities and expectations of the occupants/users. Home automation provides a centralized or distributed control of electrical appliances. Adding intelligence to the home environment, it would be possible to obtain, not only excellent levels of comfort, but also energy savings both inside and outside the dwelling, for instance using smart solutions for the management of the external lights and of the garden

    Towards Intelligent Distribution Systems: Solutions for Congestion Forecast and Dynamic State Estimation Based Protection

    Get PDF
    The electrical distribution systems are undergoing drastic changes such as increasing penetration level of distributed renewable energy sources, energy storage, electrification of energy-efficient loads such as heat pumps and electric vehicles, etc., since the last decade, and more changes are expected in the future. These changes pose challenges for the distribution system operators such as increased level of network congestions, voltage variations, as well as protection settings and coordination, etc. These will require the development of new paradigms to operate distribution systems securely, safely, and economically while hosting a large amount of renewable energy sources.First, the thesis proposed a comprehensive assessment framework to assess the distribution system operator’s future-readiness and support them in determining the current status of their network infrastructures, business models, and policies and thus to identify areas for required developments. The analysis for the future-readiness of the three distribution system operators (from France, The Netherlands, and Sweden) using the proposed assessment framework has shown that presently the distribution system operators have a rather small penetration of renewable energy sources in their grids, however, which is expected to increase in the future. The distribution system operators would need investments in flexibilities, novel forecasting techniques, advanced grid control as well as improved protection schemes. The need for the development of new business models for customers and changes in the policy and regulations are also suggested by the analysis. Second, the thesis developed a congestion forecast tool that would support the distribution system operators to forecast and visualize network overloading and voltage variations issues for multiple forecasting horizons ranging from close-to-real time to day-ahead. The tool is based on a probabilistic power flow that incorporates forecasts of production from solar photovoltaic and electricity demand combined with load models along with the consideration of different operating modes of solar photovoltaic inverters to enhance the accuracy. The congestion forecast tool can be integrated into the existing distribution management systems of distribution system operators via an open cross-platform using Codex Smart Edge technology of Atos Worldgrid. The congestion forecast tool has been used in a case study for two real distribution systems (7-bus feeder and 141-bus system). It was demonstrated in the case study that the tool can predict the congestion in the networks with various prediction horizons. The congestion forecast tool would support distribution system operators by forecasting the network congestion and setting up a congestion management plan.Finally, the dynamic state estimation based protection scheme supported by advanced measurement technologies developed within EU project UNITED-GRID has been implemented and validated experimentally at Chalmers power system laboratory. This dynamic state estimation based protection scheme has a strong advantage over the traditional protection scheme as it does not require any relay settings and coordination which can overcome the protection challenges arising in distribution grids with a large amount of renewable energy sources. The results from the validation of the dynamic state estimation based protection scheme at Chalmers laboratory have shown that the fault detection using this scheme has worked properly as expected for an application of the line protection

    A Novel Internet-of-Things Infrastructure to Support Self-Healing Distribution Systems

    Get PDF
    In this paper, we present a novel distributed software infrastructure to foster new services in smart grids with particular emphasis on supporting self-healing distribution systems. This infrastructure exploits the rising Internet-of-Things paradigms to build and manage an interoperable peer-to-peer network of our prototype smart meters, also presented in this paper. The proposed three-phase smart meter, called 3-SMA, is a low cost and open-source Internet-connected device that provides features for self-configuration. In addition, it selectively run onboard-algorithms for smart grid management depending on its deployment on the distribution network. Finally, we present the experimental results of Hardware-In-the-Loop simulations we performed
    • …
    corecore