960 research outputs found

    A Novel Asymmetric Coded Placement in Combination Networks with end-user Caches

    Full text link
    The tradeoff between the user's memory size and the worst-case download time in the (H,r,M,N)(H,r,M,N) combination network is studied, where a central server communicates with KK users through HH immediate relays, and each user has local cache of size MM files and is connected to a different subset of rr relays. The main contribution of this paper is the design of a coded caching scheme with asymmetric coded placement by leveraging coordination among the relays, which was not exploited in past work. Mathematical analysis and numerical results show that the proposed schemes outperform existing schemes.Comment: 5 pages, 2 figures, ITA 201

    Caching in Combination Networks: Novel Multicast Message Generation and Delivery by Leveraging the Network Topology

    Full text link
    Maddah-Ali and Niesen's original coded caching scheme for shared-link broadcast networks is now known to be optimal to within a factor two, and has been applied to other types of networks. For practical reasons, this paper considers that a server communicates to cache-aided users through HH intermediate relays. In particular, it focuses on combination networks where each of the K=(Hr)K = \binom{H}{r} users is connected to a distinct rr-subsets of relays. By leveraging the symmetric topology of the network, this paper proposes a novel method to general multicast messages and to deliver them to the users. By numerical evaluations, the proposed scheme is shown to reduce the download time compared to the schemes available in the literature. The idea is then extended to decentralized combination networks, more general relay networks, and combination networks with cache-aided relays and users. Also in these cases the proposed scheme outperforms known ones.Comment: 6 pages, 3 figures, accepted in ICC 2018, correct the typo in (6) of the previous versio

    Fundamental Limits of Coded Caching: Improved Delivery Rate-Cache Capacity Trade-off

    Get PDF
    A centralized coded caching system, consisting of a server delivering N popular files, each of size F bits, to K users through an error-free shared link, is considered. It is assumed that each user is equipped with a local cache memory with capacity MF bits, and contents can be proactively cached into these caches over a low traffic period; however, without the knowledge of the user demands. During the peak traffic period each user requests a single file from the server. The goal is to minimize the number of bits delivered by the server over the shared link, known as the delivery rate, over all user demand combinations. A novel coded caching scheme for the cache capacity of M= (N-1)/K is proposed. It is shown that the proposed scheme achieves a smaller delivery rate than the existing coded caching schemes in the literature when K > N >= 3. Furthermore, we argue that the delivery rate of the proposed scheme is within a constant multiplicative factor of 2 of the optimal delivery rate for cache capacities 1/K N >= 3.Comment: To appear in IEEE Transactions on Communication

    Generalized Degrees of Freedom of the Symmetric Cache-Aided MISO Broadcast Channel with Partial CSIT

    Get PDF
    We consider the cache-aided MISO broadcast channel (BC) in which a multi-antenna transmitter serves KK single-antenna receivers, each equipped with a cache memory. The transmitter has access to partial knowledge of the channel state information. For a symmetric setting, in terms of channel strength levels, partial channel knowledge levels and cache sizes, we characterize the generalized degrees of freedom (GDoF) up to a constant multiplicative factor. The achievability scheme exploits the interplay between spatial multiplexing gains and coded-multicasting gain. On the other hand, a cut-set-based argument in conjunction with a GDoF outer bound for a parallel MISO BC under channel uncertainty are used for the converse. We further show that the characterized order-optimal GDoF is also attained in a decentralized setting, where no coordination is required for content placement in the caches.Comment: first revisio

    Coded Caching for a Large Number Of Users

    Full text link
    Information theoretic analysis of a coded caching system is considered, in which a server with a database of N equal-size files, each F bits long, serves K users. Each user is assumed to have a local cache that can store M files, i.e., capacity of MF bits. Proactive caching to user terminals is considered, in which the caches are filled by the server in advance during the placement phase, without knowing the user requests. Each user requests a single file, and all the requests are satisfied simultaneously through a shared error-free link during the delivery phase. First, centralized coded caching is studied assuming both the number and the identity of the active users in the delivery phase are known by the server during the placement phase. A novel group-based centralized coded caching (GBC) scheme is proposed for a cache capacity of M = N/K. It is shown that this scheme achieves a smaller delivery rate than all the known schemes in the literature. The improvement is then extended to a wider range of cache capacities through memory-sharing between the proposed scheme and other known schemes in the literature. Next, the proposed centralized coded caching idea is exploited in the decentralized setting, in which the identities of the users that participate in the delivery phase are assumed to be unknown during the placement phase. It is shown that the proposed decentralized caching scheme also achieves a delivery rate smaller than the state-of-the-art. Numerical simulations are also presented to corroborate our theoretical results
    • …
    corecore