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Generalized Degrees of Freedom of the Symmetric
Cache-Aided MISO Broadcast Channel

With Partial CSIT
Enrico Piovano, Hamdi Joudeh and Bruno Clerckx

Abstract—We consider the cache-aided MISO broadcast chan-
nel (BC) in which a multi-antenna transmitter serves K single-
antenna receivers, each equipped with a cache memory. The
transmitter has access to partial knowledge of the channel state
information. For a symmetric setting, in terms of channel strength
levels, partial channel knowledge levels and cache sizes, we
characterize the generalized degrees of freedom (GDoF) up to a
constant multiplicative factor. The achievability scheme exploits
the interplay between spatial multiplexing gains and coded-
multicasting gain. On the other hand, a cut-set-based argument
in conjunction with a GDoF outer bound for a parallel MISO BC
under channel uncertainty are used for the converse. We further
show that the characterized order-optimal GDoF is also attained
in a decentralized setting, where no coordination is required for
content placement in the caches.

Index Terms—Channel state information at the transmitter,
coded caching, cache-aided interference management.

I. INTRODUCTION

Traffic over wireless networks is predominantly becoming
content-oriented, a transformation mainly driven by the ad-
vent of multimedia applications, especially video-on-demand
services [2]. For this type of traffic, there is often a large
content library out of which users request specific files. The
content library is typically generated well before transmission,
creating the opportunity to pre-store (i.e. cache) parts of the
content at different nodes across the network during off-peak
times, when the network resources are under utilized. This
cached information is then used during peak times, when users
are actively requesting content and competing for wireless
spectrum, to reduce the transmission load over the network
[3]. Therefore, such cache-aided networks often operate in two
phases: a placement phase which takes place during off-peak
times, and a delivery phase which takes place during peak
times [4].

In single-user systems, the caching gain comes from making
part of the content locally available to the user. Such local
caching gain scales with the cache memory size, and extends
to networked systems with no interference, i.e. where each user
enjoys a dedicated and isolated communication link. The pic-
ture, however, is very different when users share communica-
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tion links. This was taken up by Maddah-Ali and Niesen in [4],
where caching was investigated in the context of a broadcast
network in which one transmitter (server) communicates with
multiple users, equipped with cache memories, over a shared
noiseless link. In addition to the obvious local caching gains,
Maddah-Ali and Niesen revealed a (hidden) global caching
gain which scales with the aggregate size of cache memories
distributed across the network, despite the lack of cooperation
amongst users during transmissions. Such global caching gain
is exploited through careful placement of content during the
placement phase, creating (coded) multicasting opportunities
during the delivery phase, that would not naturally occur
otherwise. This in turn allows serving multiple distinct user
demands using fewer transmissions.

Global caching gains were initially demonstrated assuming
a centralized setting, were centrally coordinated placement
takes place [4]. While the placement phase takes place during
off-peak hours before user demands are known to the trans-
mitter, it was still assumed that it was carried out in a centrally
coordinated manner in which the number and identity of active
users during the delivery phase are known beforehand. This
is often difficult to satisfy in practical networks, particularly
in wireless settings where users enjoy a high degree of
mobility. This called for developing a decentralized version
of coded-caching, where placement is randomized and hence
independent of the identity and number of active users during
the delivery phase [5]. Surprisingly, it was shown in [5] that
decentralization comes at a low price, achieving an order-
optimal performance comparable to the centralized scheme.

The coded-caching framework above has been further ex-
tended in many directions. Such developments were recently
surveyed in [6], in which challenges and open problems are
also discussed. One of the main open problems identified in
[6] is the capacity characterization of cache-aided wireless
networks.

A. Cache-Aided Wireless Networks

The capacity of wireless networks is one of the longest
standing open problems in network information theory. The
intractability of the problem, in its generality, motivated the
use of capacity approximations, e.g. the Degrees of Freedom
(DoF) metric and the Generalized Degrees of Freedom (GDoF)
metric. The introduction of such metrics allowed significant
progress in capacity studies. Since incorporating caches adds
an extra layer of complexity to the network, it is not surprising
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to see that the utilization of the above approximations is
inherited by works studying cache-aided wireless networks.
Examples of such studies in different scenarios are given in
[7]–[18].

Amongst the main insights derived from the above studies is
that caching at the transmitters creates interference alignment
and zero-forcing opportunities, enabled through partial and full
transmitter cooperation. For example, interference channels
start resembling X channels and eventually turn into multi-
antenna broadcast channels [7]–[10]. On the other hand,
caching at receivers creates coded-multicasting opportunities,
which are particularly useful in scenarios where spatial degrees
of freedom cannot sufficiently create parallel interference free
links. For example, coded-multicasting gains are pronounced
in multi-antenna broadcast channels with more receivers than
transmitting antennas [8], [19] and/or where channel state
information at the transmitter (CSIT) is imperfect [15]–[18].

B. The Cache-Aided MISO Broadcast Channel

In this paper, we focus on the cache-aided multiple-input-
single-output broadcast channel (MISO BC), in which a K-
antenna transmitter serves K single-antenna users, where each
user is equipped with a cache memory. Note that the K
transmit antennas in the considered setup are not necessarily
physically co-located, and may generally represent K radio
heads (or remote antennas) connected through a strong fron-
thaul. When CSIT is available with high accuracy, parallel
non-interfering links can be created through zero-forcing. In
this case, interference is completely managed through spatial
pre-processing, and the usefulness of caches is restricted to
local caching gains. However, this is not the case when only
partial or imperfect CSIT is available as observed in [15]–[17].

Studying the classical MISO BC (with no caches) reveals
that spatial multiplexing gains (i.e. DoF) of this channel suffer
losses under imperfect CSIT. For example, the extreme case of
finite precision CSIT causes a total collapse of the DoF to 1,
where all (DoF) benefits of multiple transmitting antennas are
lost [20]. The availability of partial instantaneous CSIT can
help salvage some of the lost gains, achieving DoF between
1 and K depending on the CSIT quality. The complementary
role of coded-caching in such scenarios was first observed
in [15]. In particular, while the primary role of CSIT is to
facilitate interference management (e.g. through zero-forcing),
coded-caching reduces interference all together by creating
multicasting opportunities. Hence, it was shown in [15] that
coded-caching can offset the loss due to partial CSIT, up to a
certain CSIT quality given the cache size.

The DoF metric, however, can be very pessimistic, as best
exemplified by the DoF collapse in [20]. This is mainly due the
limitations of the DoF framework, assigning equal strengths
to every link (with non-zero gain) in the wireless network. In
a way, the DoF metric fails to capture one of the wireless
channel’s most important features: propagation loss. This
limitation is countered by the GDoF framework, which largely
inherits the tractability of the DoF framework while capturing
the diversity in channel strengths [21]–[23]. The cache-aided
MISO BC was studied under the GDoF framework in [17],

while limiting to completely absent CSIT and considering only
achievability, with no guarantees on optimality1. In a different
line of work, the cache-aided MISO BC under partial CSIT
was considered while focusing on the massive MIMO regime
[24]. In particular, [24] studies the delivery rate scaling laws,
as the number of transmitting antennas grows arbitrarily large,
using off-the-shelf caching strategies. While no guarantees
on information-theoretic optimality are provided in the above
work, the emphasis on the interplay between spatial multiplex-
ing gains and coded-multicasting gains is very interesting. It
turns out that this interplay, which was first noticed in [15] and
then further investigated in [18], [19], [24], plays a central role
in achieving and interpreting the order-optimal GDoF of the
cache-aided MISO BC under partial CSIT as we show through
our results. Next, we highlight the main contributions of this
paper.

C. Main Contributions and Organization

We consider a K-user cache-aided MISO BC within the
(symmetric) GDoF framework, where the channel strength
of cross-links is captured through the famous α ∈ [0, 1]
parameter [21]–[23]. In addition, we capture the entire range of
(symmetric) partial CSIT levels through the quality parameter
β ∈ [0, α], where β = 0 and β = α correspond to essentially
absent and perfect CSIT, respectively [23]. For this setting, the
main contributions are twofold, as stated below:

1) We characterize the optimal GDoF up to a constant
multiplicative factor, which is independent of all system
parameters. This order-optimal GDoF characterization is
derived while allowing central coordination during the
placement phase of the achievability scheme.

2) We show that the order-optimal GDoF, characterized
under centralized placement, is also attained in decentral-
ized settings where no coordination during the placement
phase is allowed.

It is worthwhile highlighting that the order optimal schemes
for the considered cache-aided MISO BC, for both the central-
ized and decentralized cases, abide by the separation architec-
ture [9]. In particular, the placement and generation of coded-
multicasting messages are independent of the physical channel
parameters (e.g. link strengths or topology), and follow the
placement and message generation of the original shared-
link Maddah-Ali and Niesen schemes [4], [5]. On the other
hand, the delivery of the coded-multicasting messages over
the physical channel uses the principle of rate-splitting with
common and private signalling, commonly employed for the
classical MISO BC with partial CSIT [23], [25], [26], and
essentially operates the physical channel at some point of its
multiple multicast GDoF region.

One of the technical challenges in characterizing the optimal
GDoF for the above setting is the converse, i.e. deriving an
outer bound which is within a constant multiplicative factor

1The same can be said about [15], where the DoF under partial CSIT can
be equivalently interpreted as the GDoF under no CSIT (see Section III-A2).
No converse is given in [15], except for the trivial case where perfect CSIT
is available.
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from the achievable GDoF. Under partial CSIT, the conven-
tional cut-set-based argument in [4] fails when employed on
its own (see also [9]–[11] for variants of such argument).
Alternatively, we derive an outer bound by marrying the
approach in [4] with a robust GDoF outer bound for a parallel
MISO BC under partial CSIT, which in turn employs results
from recent works by Davoodi and Jafar on classical networks
(with no caches) under channel uncertainty [20], [22], [23].
Specifically, in this novel adaptation of the approach in [20],
[22], [23] to cache-aided networks, caches at receivers are
replaced with equivalent parallel side links, and then an upper
bound on the GDoF of the resulting parallel sub-channels is
derived.

Another technical challenge arises when dealing with the
decentralized setting, particularly due to the intractable form
of the GDoF achieved under decentralized placement. This
intractability is circumvented by observing that the decentral-
ized achievable GDoF is bounded below by a centralized-like
achievable GDoF, yet with a smaller coded-multicasting gain
compared to the one achieved in a true centralized setting.
This key observation enables us to prove order-optimality in
the decentralized setting.

In addition to the contributions highlighted above, we de-
rive several insights from the optimal GDoF characterization,
which generalize former observations obtained in special cases
of the considered setting [15], [17], [20], [23]. Such insights,
and how they relate to previous observations, can be found
in Section III-A. As for the remainder of the paper, the
organization is as follows. Section II introduces the considered
setting and problem. Section III presents the two main results
and related insights. In Section IV, we derive an outer bound
which is employed in the following two sections to show order
optimality. In Section V and Section VI, we prove the two
main results, the centralized setting result and the decentralized
setting result respectively. Section VII concludes the paper.

II. PROBLEM SETTING

Consider a MISO BC consisting of a K-antenna transmitter
serving K receivers (or users), where users are equipped
with a single-antenna each. Users are indexed by the set
[K] , {1, 2, . . . ,K}. In a communication session, each user
requests one file from a content library W , {W1, . . . ,WN}
consisting of N ≥ K files, each of size F bits. We assume that
the transmitter has access to the entire library (this applies to
each radio head, or remote antenna, in physically distributed
settings).

At the receiving end of the channel, each user i is equipped
with a cache memory Ui of size MF bits, where M ∈ [0, N ].
We define the normalized cache size as

µ ,
M

N
(1)

which is interpreted as the fraction of the content library each
user is able to store locally. An illustration of the setup is
given in Fig. 1. It is readily seen that µ = 0 reduces the setup
to the classical MISO BC, while no communication needs
to take place under µ = 1. We refer to the j-th transmit
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Fig. 1. A wireless network in which a transmitter of K antennas,
Tx1, . . . ,TxK , serves K single-antenna receivers, Rx1, . . . ,RxK . The trans-
mitter has access to a library of N files, while each receiver Rxi is equipped
with a cache memory Ui.

antenna (or radio head) as the j-th transmitter henceforth,
while transmitters refers to the K transmit antennas jointly.

The network operates in two phases, a placement phase
and a delivery phase [4]. The placement phase takes place
during the off-peak times before knowing the future demands
of different users. During this phase, the cache memories of
the users are filled as an arbitrary function of the N files,
where such function is denoted as Ui = φi(W). The delivery
phase takes place during peak times where each user requests
one of the N files. For example, user i requests file Wdi for
some di ∈ [N ], where d = (d1, . . . , dK) is the tuple of all
user demands. Upon receiving the requests, each transmitter
j sends a codeword XT

j = Xj(1), . . . , Xj(T ) over T ∈ N
uses of the physical channel. At the other end, each user i
receives the sequence Y Ti = Yi(1), . . . , Yi(T ), a noisy linear
combination of the K transmitted codewords. The user then
decodes for its requested file from Y Ti and the content of its
own cache memory Ui. This is described in more detail below.

A. Physical Channel

The input-output relationship at the t-th use of the physical
channel, t ∈ [T ], is modeled by

Yi(t) =

K∑
j=1

√
aijGij(t)Xj(t) + Zi(t) (2)

where Yi(t) ∈ C is the signal received by the i-th user,
Xj(t) ∈ C is the j-th transmitter’s normalized signal with
power constraint E

(
|Xj(t)|2

)
≤ 1 and Zi(t) ∼ NC(0, 1)

is the normalized additive white Gaussian noise (AWGN),
which is i.i.d. across all dimensions. aij ∈ R+, ∀j, i ∈ [K],
captures the long-term constant gain of the link between the
j-th transmitter and the i-th receiver, while Gij(t) ∈ C is
the corresponding time-varying fading channel coefficient. To
avoid degenerate situations, we assume that the instantaneous
value |Gij(t)| is bounded away from zero and infinity for all
i, j ∈ [K] and t ∈ [T ].

1) GDoF Framework: For any i, j ∈ [K] and i 6= j, we
refer to the link between transmitter i and receiver i as a direct-
link, while the link from transmitter j to receiver i is referred
to as a cross-link. We consider a symmetric setup in which
all direct-links (or cross-links) have similar long-term gains.
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For GDoF purposes, we introduce the nominal SNR value
P ∈ R+, simply referred to as the SNR henceforth. Following
the GDoF framework [21], [22], channel gains are expressed
in terms of the SNR as

aii = P and aij = Pα, ∀i, j ∈ [K], i 6= j (3)

where the parameter α ≥ 0 quantifies the strength of cross-
links. The exponents of P in (3), i.e. 1 and α, are known as
the channel strength parameters or levels. The channel model
in (2) is rewritten as

Yi(t) =
√
PGii(t)Xi(t) +

K∑
j=1,j 6=i

√
PαGij(t)Xj(t) + Zi(t)

(4)
which is the model used throughout the paper. The results in
this paper are restricted to the regime α ∈ [0, 1], i.e. scenarios
in which the cross-link strength level is at most as strong as the
direct-link strength level. This is the most practically relevant
regime, since each receiver associates with a transmitter (i.e.
radio head or remote antenna) from which it receives the
strongest signal. Moreover, as highlighted in [23], the regime
α > 1 poses new challenges and remains an open problem
even for the classical MISO BC (with no caches) under partial
CSIT.

Remark 1. As pointed out in [22], the scaling of P in the
GDoF framework does not correspond to a physical scaling
of transmitting powers in a given channel (or network). The
correct interpretation is that each value of P defines a new
channel. A class of channels parameterized by α belong
together because the point-to-point capacity of any link (direct
or cross) normalized by log(P ) is approximately the same
across all such channels belonging to the same class. Hence,
unlike the DoF framework, the GDoF framework preserves the
diversity in link strengths as P →∞. Moreover, DoF results
are recovered from GDoF results by setting α = 1, i.e, the
special case in which all links are equally strong.

2) Partial CSIT: Let G ,
{
Gij(t) : i, j ∈ [K], t ∈ [T ]

}
be the set of all channel coefficient variables. Under partial
CSIT, such channel coefficients may be represented as

Gij(t) = Ĝij(t) +
√
P−βG̃ij(t) (5)

where Ĝ ,
{
Ĝij(t) : i, j ∈ [K], t ∈ [T ]

}
are channel

estimates, G̃ ,
{
G̃ij(t) : i, j ∈ [K], t ∈ [T ]

}
are

estimation error terms and β ∈ R is a parameter capturing
the CSIT quality level. The channel knowledge available to
the transmitters includes the coarse channel strength level α,
the CSIT quality level β and the estimates in Ĝ, but does not
include the error terms in G̃.

All variables in Ĝ and G̃ are subject to the bounded density
assumption as explained in [22], [23]. The difference between
Ĝ and G̃, as pointed out earlier, is that the former is revealed
to the transmitters while the latter is not. Hence, given the
estimates Ĝ, the variance of each channel coefficient in G
behaves as ∼ P−β and the peak of the probability density
function behaves as ∼

√
P β . Moreover, we assume throughout

this work that β ∈ [0, α]. In particular, β = 0 and β = α

capture the two extremes where channel knowledge at the
transmitters is absent and perfectly available, respectively [23].

Before we proceed, it is worth highlighting that channel
state information at the receivers (CSIR) is assumed to be
perfect. Moreover, in a slight abuse of notation, we henceforth
use Ĝ to denote the entire channel knowledge available to the
transmitters.

B. Performance Measures

Once transmitters are informed of the demands d in the
delivery phase, each transmitter j generates a sequence of
T channel inputs XT

j = ψ
(T )
j (W,d, U1, . . . , UK , Ĝ), where

ψ
(T )
j is an encoding function. Note that the availability of

partial CSIT is reflected in the argument Ĝ of ψ(T )
j . Once

the transmission is complete, each user i maps its received
signal, local cache content, user demands and perfect channel
knowledge to an estimate of the requested file Wdi denoted as
Ŵi = η

(T )
i (Y Ti , Ui,d,G), where ηi is the decoding function.

The information theoretic limits of the system are studied by
fixing N,K,M,P , and Ĝ, referred to as system parameters,
while allowing F and T to grow arbitrarily large.

For fixed system parameters, a code which takes files of size
F bits and transmits codewords of block-length T channel
uses is defined as C(T ) ,

{
φi, ψ

(T )
i , η

(T )
i : i ∈ [K]

}
. It

is evident that a code is characterized by its corresponding
caching, encoding and decoding functions defined earlier.
The performance of a code is governed by its worst-case
probability of error defined as

P (T )
e , max

G|Ĝ
max

d∈[N ]K
max
i∈[K]

P
(
Ŵi 6= Wdi

)
(6)

which is taken over all possible users, for all possible demands,
under all possible realizations of the channel coefficients given
the available CSIT. The (sum) rate of such code is defined as

R ,
KF

T
. (7)

For given system parameters, we say that the rate R is
achievable if there exists a coding scheme, consisting of
a sequence of codes

{
C(T ) : T ∈ N

}
of rate R each, with

a vanishing probability of error as the block-length grows
arbitrarily large, i.e. P (T )

e → 0 as T →∞. Note that a strictly
positive rate R > 0 requires F → ∞ as T → ∞. The (sum)
capacity C is defined as the supremum of all achievable rates
taken over all feasible coding schemes.

1) GDoF: By highlighting the dependency on the SNR P ,
it can be seen that each P defines a new channel (or network)
with capacity C(P ). The optimal (sum) GDoF is hence defined
as

GDoF , lim
P→∞

C(P )

log(P )
. (8)

Being an asymptotic (high-SNR) measure, it is well under-
stood that the GDoF does not depend on P . On the other
hand, while fixing the number of users K, we often write
GDoF(µ, α, β) to highlight the dependency on the system
parameters µ, α and β. In particular, it turns out that our
GDoF characterization is expressed in terms of the normalized
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cache size µ = M/N instead of the exact N and M , and the
cross-link strength level α and partial CSIT level β instead
of the entire CSIT Ĝ. These observations are consistent with
existing DoF results for cache-aided networks on one hand
[8], [9], [16], and GDoF studies in classical networks under
finite precision and partial CSIT on the other hand [22], [23].

2) Generalized Normalized Delivery Time: Instead of
working directly with the GDoF, it is easier to derive the re-
sults in terms of a function of the reciprocal2 1

GDoF . Hence, we
introduce the generalized normalized delivery time (GNDT),
where the optimal GNDT is defined as

GNDT(µ, α, β) ,
K

GDoF(µ, α, β)
. (9)

The GNDT (or the delivery time as we refer to it throughout
the paper) is measured in time-slots. One time-slot is the opti-
mal amount of time required to communicate a single file to a
single user over a direct-link (with strength level 1) under no
caching and no interference as P →∞. In particular, since a
single user direct-link with no interference and no caching has
a capacity of log(P )+o

(
log(P )

)
, i.e. GDoF = 1, it is readily

seen that GNDT = 1 time-slot for such setting. For any given
µ, α and β, we say that the delivery time GNDT′(µ, α, β) is
achievable if GNDT′(µ, α, β) ≥ GNDT(µ, α, β).

The GNDT generalizes the normalized delivery time (NDT)
metric in [11] to suit the GDoF framework. Hence, it is not
surprising to observe that the GNDT-GDoF relationship resem-
bles (and generalizes) the NDT-DoF relationship. Moreover, it
is readily seen from (9) that the GDoF can be interpreted as the
capacity in files per time-slot. Before we proceed, we remark
that in this paper, as in [4], [5], [7]–[11], [16], [17], we adopt
a worst-case definition of performance measures with respect
to user requests. As a result, it is always assumed that each
user requests a different file.

C. Centralized Placement vs. Decentralized Placement

Although the placement phase does not depend on the actual
user demands d in the delivery phase, placement strategies
may still depend on the identity and number of active users
during the delivery phase. Such coordination in the placement
phase is known as centralized placement. Since the identity,
or even the number, of active users may not be known several
hours before the delivery phase takes place, it is also important
to consider strategies in which placement is not allowed to
depend on such information. This lack of coordination is
known as decentralized placement [5]. Decentralization during
the placement phase can be realized by allowing randomized
placement schemes. For instance, each user i independently
draws a caching function φi(W;D) from an ensemble of
randomized caching functions parameterized by an arbitrary
random variable D, independent of i and K.

III. MAIN RESULTS AND INSIGHTS

The main results of this paper are: 1) the GDoF character-
ization of the symmetric cache-aided MISO BC under partial

2This has been observed when dealing with the DoF in many works
including [7], [9], [10], [16].

CSIT, described in Section II, to within a constant multiplica-
tive gap, and 2) showing that such GDoF characterization is
robust to decentralization. We start by presenting the first result
and deriving useful insights assuming a centralized setting,
then we extend to the decentralized setting.

A. Centralized placement

In order to state the GDoF result, we define the centralized
GNDT function GNDTC(µ, α, β), where

GNDTC(µ, α, β) ,
K(1− µ)

K(1− (α− β)) + (1 +Kµ)(α− β)
(10)

for any α ∈ [0, 1], β ∈ [0, α] and µ ∈ {0, 1
K ,

2
K , . . . ,

K−1
K , 1},

and the lower convex envelope of these points for all other
µ ∈ [0, 1].

Theorem 1. For the symmetric cache-aided MISO BC under
partial CSIT described in Section II, under centralized place-
ment we achieve the GDoF given by

GDoFC(µ, α, β) =
K

GNDTC(µ, α, β)
. (11)

Moreover, the achievable GDoF in (11) satisfies

GDoFC(µ, α, β) ≤ GDoF(µ, α, β) ≤ 12 · GDoFC(µ, α, β).
(12)

The proof of Theorem 1 is presented in Section V. As in [7],
[9], the somewhat loose multiplicative gap of 12 in Theorem
1 is due to the analytical bounding techniques used in the
converse. Numerical simulations suggest that such factor is
no more than 3.5 for K ≤ 100 and N ≤ 500.

To gain some insights into the GDoF characterized in
Theorem 1, we restrict the following discussion to µ ∈
{0, 1

K ,
2
K , . . . ,

K−1
K }, for which the achievable GDoF in (11)

is expressed as

GDoFC(µ, α, β) = (1− (α− β))
K

1− µ
+ (α− β)

1 +Kµ

1− µ
.

(13)

It is easily seen that GDoFC(µ, α, β) in (13) reduces to its
classical counterpart in [23] under µ = 0, i.e. where no caches
are available. In this case, the multiplicative factor of 12 can
be reduced to 1. However, more significantly, the form taken
by the GDoF in (13), for any µ (in the set above), is analogous
to the form of the classical GDoF in [23]. This is explained
in more details next, where we use the terminology of signal
power levels measured in terms of the exponent of P [27].
We start by looking at specialized cases from which we build
our way towards the general case.

1) DoF Under Partial CSIT: Recall that DoF character-
ization under partial CSIT is obtained by setting α = 1.
Defining DoFC(µ, β) , GDoFC(µ, 1, β) and applying such
specialization to (13), we obtain

DoFC(µ, β) = β
K

1− µ
+ (1− β)

1 +Kµ

1− µ
. (14)

Under perfect CSIT (β = 1), zero-forcing over the physical
channel enables a spatial multiplexing gain of K. By incorpo-
rating caches into the picture, we obtain a further local caching
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gain of 1
1−µ , which is the only relevant caching gain here as

zero-forcing creates parallel (non-interfering) single-user links.
Under the other extreme, i.e. finite precision CSIT (β = 0), all
spatial multiplexing gains in the physical channel are lost and
the DoF collapses to the one obtained in the original setting
with a shared link [4]. In this case, the network relies on
the local caching gain of 1

1−µ and the global caching gain
of 1 + Kµ, where the latter is enabled by creating coded-
multicasting opportunities.

It is readily seen that finite precision CSIT is as (un)useful
as no CSIT from a DoF perspective3. This is reminiscent of
the DoF collapse in the classical MISO BC [20]. Moreover, it
is worth noting that since the DoF of the cache-aided MISO
BC is an upper bound for the DoF of cache-aided interference
networks, this collapse under finite precision CSIT also holds
for the networks in [8]–[10].

For partial CSIT (0 < β < 1), the DoF takes the
form βDoFC(µ, 1) + (1 − β)DoFC(µ, 0), laying on the line
connecting the two extremes. In this case, partial CSIT of level
β allows (power-controlled) zero-forcing transmission in the
bottom β signal power levels without leaking any interference
above the noise floor at undesired users. This utilization of
only a fraction of power levels yields the factor β in the
DoF. The remaining signal power levels are used for a shared-
link-type transmission requiring no CSIT. In particular, this
transmission sees interference from the zero-forcing layer,
hence is left with the top (1−β) power levels as reflected in the
DoF. Since all users can decode (and remove) all codewords
in the shared-link layer without influencing its achievable
DoF, the zero-forcing layer remains unaffected. To facilitate
such partitioned transmission, messages (or files) are split into
private and common parts delivered through the zero-forcing
and shared-link layers, respectively.

The scheme described above expands upon, and inherits
the main features of, the rate-splitting scheme4 used for
the classical MISO BC with partial CSIT (alongside other
networks) [23], [25], [26], [28]–[30]. Hence, it is not surprising
to see that the cache-aided DoF takes the same weighted-sum
form of the classical DoF in [26], recovered from the above
by setting µ = 0.

2) GDoF Under Finite Precision CSIT: This is recovered
from (13) by setting β = 0 and corresponds to the achievable
GDoF in [17]. It is easily checked that the GDoF in this case
takes the form of the DoF in (13), after replacing β with
1−α. This is inline with the observation that DoF results under
partial CSIT translate to GDoF results under finite precision
CSIT [28]. This also highlights that unlike the DoF metric, the
GDoF metric captures spatial multiplexing gains under finite
precision (or even absent) CSIT. Such multiplexing gains,
however, are achieved by exploiting the signal power levels
only.

3) The General Case: For arbitrary levels of β and α, the
insights derived in [23] for the GDoF of the classical MISO
BC extend to the cache-aided counterpart. In particular, the
cross-link strength level α and the CSIT quality level β equally

3It is implicitly understood that such statements hold in an order-optimal
sense. This applies to all similar observations herein.

4Also known as signal space partitioning [28].

counter each other and hence only their difference (α − β)
matters. The bottom 1− (α−β) power levels are reserved for
parallel-link-type transmission through zero-forcing and power
control, while the shared-link-type transmission rises above,
essentially occupying the top (α−β) power levels. Therefore,
it is readily seen that as (α− β) increases, the network starts
relying more on the global caching gain and less on spatial
multiplexing gains as reflected in (13).

B. Decentralized placement

In this part we consider the decentralized setting where
centrally coordinated placement is not allowed during the
placement phase. Before we state the following result, we
define the decentralized GNDT function GNDTD(µ, α, β),
where

GNDTD(µ, α, β),K
K−1∑
m=0

(
K−1
m

)
µm (1− µ)

K−m

K(1− (α− β)) + (1 +m)(α− β)

(15)
for any α ∈ [0, 1], β ∈ [0, α] and µ ∈ [0, 1].

Theorem 2. For the symmetric cache-aided MISO BC under
partial CSIT described in Section II, under decentralized
placement we achieve the GDoF given by

GDoFD(µ, α, β) =
K

GNDTD(µ, α, β)
. (16)

Moreover, the achievable GDoF in (16) satisfies

GDoFD(µ, α, β) ≤ GDoF(µ, α, β) ≤ 12 · GDoFD(µ, α, β).
(17)

The proof of Theorem 2 is presented in Section VI. The
most significant consequence of Theorem 2 is that centralized
placement leads to at most a constant-factor improvement of
the GDoF over decentralized placement. Through a straightfor-
ward inspection, this constant-factor improvement is bounded
above by GDoFC(µ, α, β) ≤ 12 · GDoFD(µ, α, β), obtained
from (12) and (17). In Section VI-C, this multiplicative gap
between the centralized GDoF and decentralized GDoF is
tightened to 1.5.

In Section VI-B, we show that an upper bound on
GNDTD(µ, α, β) takes the form of the centralized delivery
time in (10), yet with a lower coded-multicasting gain. It
follows that the insights that follow Theorem 1, derived in
the light of the centralized achievable GDoF, extend to the
decentralized setting.

IV. OUTER BOUND

In this section, we obtain an outer bound (upper bound) for
the GDoF. Since it is more convenient to work with the GNDT
in (9), the outer bound is derived in terms of a lower bound
on GNDT(µ, α, β).

Theorem 3. For the symmetric cache-aided MISO BC under
partial CSIT described in Section II, a lower bound on the
optimal GNDT is given by

GNDT(µ, α, β) ≥ max
s∈{1,2,...,K}

GNDTlb
s (µ, α, β), (18)
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where GNDTlb
s (µ, α, β) is defined as5

GNDTlb
s (µ, α, β),

(
s

1 + (s− 1)(1− (α− β))

(
1− M⌊

N
s

⌋))+

.

(19)

In the above, for any subset of s ≤ K users, the cor-
responding GNDTlb

s (µ, α, β) in (19) is a lower bound on
the optimal delivery time GNDT(µ, α, β). It follows that
the tightest of such lower bounds is obtained by max-
imizing GNDTlb

s (µ, α, β) over s. We also observe that
GNDTlb

s (µ, α, β) depends on the parameters of the physical
channel through the difference (α − β). In particular, for a
fixed number of users s, library size N and cache size M ,
GNDTlb

s (µ, α, β) decreases when (α − β) decreases. This
is intuitively explained by the fact that decreasing (α − β)
corresponds to higher (relative) CSIT quality, enabling larger
spatial multiplexing gains which in turn reduce the delivery
time.

From Theorem 3 and (9), it is easily seen that an upper
bound for the GDoF is given by

GDoF(µ, α, β) ≤ min
s∈{1,2,...,K}

K

GNDTlb
s (µ, α, β)

. (20)

The outer bound in Theorem 3 is employed to prove the
converse parts of Theorem 1 and Theorem 2 in the following
sections. In the remainder of this section, we present a proof
for Theorem 3. The proof relies on two main ingredients
summarized as follows.
(a) A lower bound on GNDT(µ, α, β) is obtained by con-

sidering a subset of s ≤ K users and a multi-demand
communication, in which each user requests multiple
distinct files.

(b) Each cache memory is replaced with a parallel side link
of capacity that can convey the information content of
the cache to the user by the end of the multi-demand
communication. By bounding the GDoF of this new
channel, we bound the delivery time of the multi-demand
communication.

Similarities and differences between this proof and previous
works are discussed at the end of this section.

A. Multi-Demand Communication
Consider a subset of s ≤ K users and a multi-demand

communication over the cache-aided channel, in which each
user requests a set of

⌊
N
s

⌋
distinct files and no file is requested

by two different users. We denote the
⌊
N
s

⌋
files requested by

user i as Wd1
i
, . . . ,W

d
bN/sc
i

. By the end of the communication,
each user is able to recover the

⌊
N
s

⌋
requested files from

the received signals and the local cache content. The optimal
delivery time for this multi-demand communication is denoted
by GNDTmd, which is also defined in the worst-case sense,
i.e. for the worst-case amongst all possible multi-demands of⌊
N
s

⌋
files. It is readily seen that GNDTmd satisfies

GNDTmd ≤
⌊
N

s

⌋
GNDT(µ, α, β) (21)

5For any x ∈ R, we define (x)+ , max{0, x}.

since we are ignoring K − s users and it is always feasible to
treat each demand of s files separately in a consecutive manner.
Next, we transfer to an equivalent setup with no caches.

B. Cache Replacement and Delivery Time Lower Bound
Now consider a new MISO BC consisting of the same K

transmitters, with access to the same library of N files, and
the s ≤ K users served in the multi-demand communication
above. However, users in this new channel are not equipped
with caches. Alternatively, communication is carried out over
two parallel sub-channels. The input-output relationship is
given by

Yi(t) =
√
PGii(t)Xi(t) +

K∑
j=1,j 6=i

√
PαGij(t)Xj(t) + Zi(t)

(22)

Bi(t) =
√
P γAi(t) + Ci(t) (23)

where (22) and (23) describe the first and second sub-channels,
respectively. All physical properties of (4), described in Sec-
tion II-A, are inherited by the first sub-channel in (22). For the
second sub-channel, Ai(t) ∈ C is the signal transmitted to the
i-th user with a power constraint E

(
|Ai(t)|2

)
≤ 1, Bi(t) ∈ C

is the signal received by the i-th user and Ci(t) ∼ NC(0, 1) is
the i.i.d. AWGN. Each link in the second sub-channel remains
constant over t and has channel strength level γ ≥ 0, hence
supports a transmission at rate γ log(P ) + o

(
log(P )

)
without

influencing the rate over the first sub-channel. Equivalently,
γ is the GDoF (or capacity in files per time-slot) of each
individual link in the second sub-channel.

In this new MISO BC with parallel sub-channels, each
user i requests the same

⌊
N
s

⌋
files requested by the cor-

responding user in the multi-demand communication, i.e.
Wd1

i
, . . . ,W

d
bN/sc
i

. Each transmitter j then generates the code-
words Xn

j and Anj , sent over n ∈ N channel uses through the
sub-channels in (22) and (23) respectively. By the end of the
communication, user i recovers the bN/sc requested files from
the signals Y ni and Bni , received through the sub-channels in
(22) and (23) respectively. The optimal (sum) GDoF of this
new MISO BC, denoted by GDoFP(α, β, γ), is bounded above
as follows.

Lemma 1. For the s-user MISO BC, consisting of two parallel
sub-channels, described in (22) and (23), the optimal (sum)
GDoF is bounded above as

GDoFP(α, β, γ) ≤ (α− β) + s
(
1− (α− β)

)
+ sγ. (24)

It is evident that the bound on GDoFP(α, β, γ) in (24)
depends on α and β through their difference (α− β). For the
extreme case of (α − β) = 0, the parallel MISO BC enjoys
full spatial multiplexing gains over the first sub-channel. On
the other hand, for the other extreme of (α − β) = 1, all
spatial multiplexing gains are annihilated and the GDoF of
the first sub-channel collapses to 1. Note that the contribution
from the second sub-channel is unaffected since it consists of
non-interfering links. The proof of Lemma 1 is relegated to
Appendix A. Next, we argue that by setting γ such that

γ · GNDTmd = M (25)
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the corresponding optimal delivery time of the new channel
is a lower bound on the optimal total delivery time of the
cache-aided multi-demand communication, i.e.

s
⌊
N
s

⌋
GDoFP(α, β, γ)

≤ GNDTmd. (26)

This follows by observing that (25) guarantees that for each
user i, the content of the cache Ui in the original channel can
be delivered over the second sub-channel in (23) using at most
GNDTmd time-slots. Since this does not influence the GDoF
achieved over the first sub-channel in (22), any placement
and delivery strategy implemented for the cache-aided multi-
demand communication is feasible in the new channel and will
take at most GNDTmd time-slots. We proceed while assuming
that (25) holds.

By combining (26) with Lemma 1 and (25), followed by
invoking (21), we obtain⌊

N

s

⌋
s ≤ GNDTmd

(
1 + (s− 1)(1− (α− β)) + sγ

)
(27)

= GNDTmd

(
1 + (s− 1)(1− (α− β))

)
+ sM (28)

≤ GNDT(µ, α, β)

⌊
N

s

⌋ (
1 + (s− 1)(1− (α− β))

)
+ sM. (29)

After some rearrangement and by considering that the delivery
time is non-negative, we obtain

GNDT(µ, α, β)≥

(
s

1 + (s− 1)(1− (α− β))

(
1− M⌊

N
s

⌋))+

.

(30)
The lower bound in (30) is further tightened by maximizing
over all possible sizes of user subsets, i.e. s ∈ [K], from which
the result in (18) directly follows.

C. Insights and Relation to Prior Works

The multi-demand communication to a subset of users
corresponds to the cut-set-based bound in [4], while the cache
replacement is inspired by [16]. However, it is worthwhile
highlighting that bounding the DoF under partial current and
perfect delayed CSIT and side links (after cache replacement)
in [16] is very different from bounding the GDoF under only
partial current CSIT and side links in Lemma 1. In particular,
the DoF upper bound in [16] follows the footsteps of [31], and
is essentially based on a genie-aided argument. Such argument
does not work for the DoF/GDoF with only partial current
CSIT and is known to give a loose bound in general. The
proof of Lemma 1 is hence based on the outer bounds in [20],
[22], [23], which rely on the aligned image sets approach under
channel uncertainty.

It is also worthwhile highlighting that the GDoF upper
bound in Lemma 1 is achievable through separate coding
over the two sub-channels, i.e. there are no synergistic gains
to be exploited through joint coding. This comes in contrast
to the setting in [16], where jointly coding over the parallel
sub-channels (after cache replacement) can strictly outperform
separate coding. The influence of this synergy (or the lack of
it) is clear when we revert back to the cache-aided channels.

In particular, we saw in Theorem 1 that the considered cache-
aided MISO BC collapses to the shared-link setting in [4]
when (α − β) = 1. However, even when current CSIT is
completely absent in [16], the synergy between caches and
delayed CSIT leads to an improved performance compared to
the shared-link setting.

V. CENTRALIZED PLACEMENT

In this section, we treat the centralized setting and prove
Theorem 1. We start with the achievability and then we prove
order-optimality using the outer bound in Theorem 3.

A. Achievability scheme

Here we present a centralized scheme which achieves the
delivery time given by GNDTC(µ, α, β) in (10), and hence the
GDoF given by GDoFC(µ, α, β) in Theorem 1. This scheme
builds upon and generalizes the one proposed for the cache-
aided MISO BC in [17]. The key difference is that the scheme
in [17] is tuned to a special case in which only finite precision
CSIT (i.e. β = 0) is available, while the one proposed here
bridges the gap by considering all relevant levels of partial
CSIT, i.e. β ∈ [0, α].

A key ingredient of the achievability scheme is the trans-
mission of common and private codewords during the delivery
phase. We start by treating this physical-layer aspect through
the following result.

Lemma 2. Consider the K-user MISO BC with signal model
given by (4) and properties described in Section II-A. Further
assume that the transmitter has a common message W (c),
intended to all user, and private messages W (p)

1 , . . . ,W
(p)
K ,

where W (p)
i is intended only to user i. We achieve the GDoF

GDoF(c) = (α− β) (31)

GDoF
(p)
i = 1− (α− β), ∀i ∈ [K] (32)

where GDoF(c) is the GDoF achieved by the common message
and GDoF

(p)
i is the GDoF achieved by the i-th private

message.

The GDoF in (31) and (32) is achieved using signal space
partitioning [23], [28]. Using the terminology of signal power
levels to explain this partitioning, the upper (α − β) power
levels are occupied by the common message while the bottom
1−(α−β) power levels are reserved for the private messages.
Note that the transmission of the common message requires no
CSIT, while the transmission of the private messages is carried
out using zero-forcing and power control, and hence may
rely on the available partial CSIT. Therefore, in the extreme
case of (α − β) = 1 (i.e. finite precision CSIT and equal
strength paths), spatial multiplexing gains achieved through
zero-forcing and power control collapse and the corresponding
private messages will have a GDoF of zero. The full proof of
Lemma 2 is relegated to Appendix B.

In the following, we focus on µ ∈ { 1
K ,

2
K , . . . ,

K−1
K }, such

that Kµ is an integer. For µ = 0, no caching is possible and
the GDoF-optimal transmission strategy is given in [23]. For
the other extreme of µ = 1, we have GNDTC(1, α, β) = 0
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as each user can store the entire library. For the remaining µ,
where Kµ is not necessarily an integer, GNDTC(µ, α, β) is
obtained by memory-sharing over the schemes corresponding
to µ ∈

{
0, 1

K ,
2
K , . . . ,

K−1
K , 1

}
, as pointed out in [4].

1) Placement phase: The placement is analogous to [4] and
does not depend on the parameters specific to the considered
channel, e.g. transmitting antennas, α and β. We use

mC , µK

for notational briefness and to facilitate reusing some parts in
the following section for the decentralized case. Let

Ω = {T ⊆ [K] : |T | = mC}

be the family of all subsets of users with cardinality mC. Each
file Wl ∈ W is split into

(
K
mC

)
non overlapping, equal size,

subfiles labeled as Wl,T , for all T ∈ Ω, where each subfile
consists of F/

(
K
mC

)
bits. User i caches all the subfiles Wl,T

such that i ∈ T and l ∈ [N ]. Hence, the corresponding cache
memory is filled as Ui = {Wl,T : T ∈ Ω, i ∈ T , l ∈ [N ]}.
Each user stores N

(
K−1
mC−1

)
subfiles which corresponds to a

total of MF bits, hence satisfying the memory constraint.
2) Delivery phase: During the delivery phase, the tuple d

of all user demands is revealed, where each user i makes a
request for file Wdi . Since user i has all subfiles Wdi,T such
that i ∈ T , the transmitter has to deliver all subfiles Wdi,T
such that i /∈ T , for all users i ∈ [K]. This corresponds to
a total of K(1 − µ)F bits to be delivered over the wireless
channel.

The transmitter splits each subfile Wdi,T , with i /∈ T , into a
common mini-subfile W (c)

di,T and a private mini-subfile W (p)
di,T

such that Wdi,T =
(
W

(c)
di,T ,W

(p)
di,T

)
. The two mini-subfiles

W
(c)
di,T and W (p)

di,T have sizes q|Wdi,T | bits and (1−q)|Wdi,T |
bits respectively, where |Wdi,T | is the size of file Wdi,T and
q is the file splitting ratio given by

q =
(1 +mC)(α− β)

K(1− (α− β)) + (1 +mC)(α− β)
. (33)

All common mini-subfiles are coded using the techniques in
the original coded-multicasting scheme in [4]. In particular,
subsets of 1+mC common mini-subfiles W (c)

di,T are combined
together using a bitwise XOR operation to generate multicas-
ting messages intended for subsets of 1+mC users as follows

W
(c)
S = ⊕i∈SW (c)

di,S\{i} (34)

for all S ∈ Θ, where Θ = {S ⊆ [K] : |S| = 1 + mC}.
All multicasting messages W (c)

S are encoded into a common
codeword X(c), while all private mini-subfiles W (p)

di,T intended
to user i are encoded into the private codeword X

(p)
i . Next,

the transmission of the common and private codewords over
the wireless channel is carried out as described in Appendix
B.

By decoding X(c), each user i retrieves the multicasting
messages W

(c)
S for all S ∈ Θ. Hence, user i recovers all

missing common mini-subfiles by combining with the content
of its local cache as in [4]. For example, for some T such
that i /∈ T , user i solves for the missing W

(c)
di,T using XOR

combining of W
(c)
S , where S = T ∪ {i}, with the pre-

stored mC common mini-subfiles W
(c)
dk,S\{k} with k ∈ T .

After decoding X(c), and removing its contribution from the
received signal as explained in Appendix B, user i decodes
the private codeword X

(p)
i , from which the missing private

mini-subfiles W (p)
di,T , with T such that i /∈ T , are retrieved.

At this stage, the entire requested file Wdi is recovered.
3) Achievable Delivery Time: The shared-link-type trans-

mission, taking place over X(c), delivers a total of qK(1−µ)
files (by excluding the parts already cached) at rate (α−β)(1+
mC) files per time slot, where (α − β) is the GDoF of the
physical channel as seen from Lemma 2 and (1 +mC) is the
gain due to coded-multicasting. Hence, the delivery time for
the shared-link layer is

Kq(1− µ)

(α− β)(1 +mC)
=

K (1− µ)

K (1− (α− β)) + (1 +mC) (α− β)
.

(35)
On the other hand, each X(p)

i in the zero-forcing layer delivers
a total of (1− q)(1−µ) files at rate 1− (α−β) files per time
slot, as seen from Lemma 2. Hence, the delivery time for this
layer is

K(1− q)(1− µ)

K
(
1− (α− β)

) =
K (1− µ)

K (1− (α− β)) + (1 +mC) (α− β)
.

(36)
Since the two layers take place in parallel, the total delivery
time is also given by

GNDTC(µ, α, β) =
K (1− µ)

K (1− (α− β)) + (1 +mC) (α− β)
.

(37)
As GNDTC(µ, α, β) is achievable, then the corresponding
GDoF given by GDoFC(µ, α, β) is achievable.

B. Converse

Here we prove the converse in (12), which is equivalent to
showing order-optimality of GNDTC(µ, α, β), i.e.

GNDTC(µ, α, β)

GNDT(µ, α, β)
≤ 12.

Since GNDTC(µ, α, β) and GNDTlb
s (µ, α, β) only depend on

the difference (α − β), with a slight abuse of notation we
define

GNDTC(µ, δ) ,
K (1− µ)

K (1− δ) + (1 +Kµ) δ
(38)

and

GNDTlb
s (µ, δ) ,

(
s

1 + (s− 1)(1− δ)

(
1− M⌊

N
s

⌋))+

.

(39)
where δ ∈ [0, 1], GNDTC(µ, δ = α − β) = GNDTC(µ, α, β)
and GNDTlb

s (µ, δ = α − β) = GNDTlb
s (µ, α, β). Note µ ∈

{0, 1
K ,

2
K , . . . ,

K−1
K , 1} is assumed in (38), where the lower

convex envelope is taken for the remaining points in µ ∈ [0, 1].
From the above, the lower bound in (18) is rewritten as

GNDT(µ, α, β) ≥ max
s∈{1,2,...,K}

GNDTlb
s (µ, δ = α− β) (40)
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In the remaining part, we work with GNDTC(µ, δ) and
GNDTlb

s (µ, δ) for convenience. We show in Appendix C-A
that for any µ, there exists a particular s ∈ [K] such that
GNDTC(µ, δ)/GNDTlb

s (µ, δ) ≤ 12 for all δ ∈ [0, 1]. Since the
right-hand-side of (40) is bounded below by GNDTlb

s (µ, δ) for
any s ∈ [K], the order-optimality within a factor of 12 follows.
This concludes the proof of the converse.

VI. DECENTRALIZED PLACEMENT

In this section, we prove Theorem 2 which considers the
decentralized setting. As in Section V, we start with the
achievability and then proceed to prove order-optimality.

A. Achievability Scheme
Here we propose a decentralized scheme which achieves the

delivery time given by GNDTD(µ, α, β) in (15), and hence the
GDoF given by GDoFD(µ, α, β) in Theorem 2. We start with
the placement phase.

1) Placement Phase: This is similar to the procedure in
the original decentralized coded-caching paper [5], and hence
does not depend on the wireless channel parameters. Each user
i stores a subset of µF bits from each file, chosen uniformly
at random. Therefore, each bit of each file is stored in some
subset of users6 T̃ ∈ 2[K], where |T̃ | ∈ {0, 1, . . . ,K}. For
some l ∈ [N ], we use Wl,T̃ to denote the bits of file Wl

which are stored by all users in T̃ , where each Wl,T̃ is referred
to as a subfile henceforth. It is readily seen that Wl can be
reconstructed from

{
Wl,T̃ : T̃ ∈ 2[K]

}
.

2) Delivery Phase: User i requires all subfiles Wdi,T̃ , such
that i /∈ T̃ , in order to recover the requested file Wdi . The
delivery phase takes place over K sub-phases indexed by
m ∈ {0, 1, . . . ,K−1}. In the m-th sub-phase, the transmitter
delivers all subfiles Wdi,T̃ , such that i ∈ [K] and i /∈ T̃ , with
|T̃ | = m. Note that m goes up to K − 1 since for |T̃ | = K,
the corresponding subfiles are pre-stored by all users.

Focusing on the m-th delivery sub-phase, delivery is carried
out as described in Section V-A2 for the centralized setting,
while replacing mC in Section V-A2 by m. This is due to
the fact that each subfile to be delivered during the m-th
decentralized delivery sub-phase is pre-stored by m users
instead of mC users in centralized delivery. It follows that
coded-multicasting messages have order 1 + m in the m-
th decentralized delivery sub-phase compared to 1 + mC in
centralized delivery, which is due to the random decentralized
placement. Note that when performing the XOR operation in
(34) for the decentralized setting, all subfiles are assumed to
be zero-padded to the length of the longest subfile [5]. By the
end of the K delivery sub-phases, the entire requested files
are recovered by the users.

Note that in sub-phase m = 0, there are no coded-
multicasting opportunities as this sub-phase delivers parts
which are not pre-stored by any user. Hence, the transmission
here is similar to the centralized setting with µ = 0, which
corresponds to transmission in the classical MISO BC with no
caches [23].

6For a set S, the power set 2S consists of all subsets of S (including S
itself) and the empty set ∅. Note that we consider finite [K], i.e. K does not
go to infinity. This guarantees that the power set is not an uncountable set.

3) Achievable Delivery Time: Consider the m-th sub-phase
and an arbitrary subset of users T̃ with size m. For each file
Wl, l ∈ [N ], the probability of any of its bits to be stored in the
cache of some user in T̃ is given by µ. Hence, the probability
of this bit to be stored by exactly the m users of T̃ is given
by µm(1− µ)K−m, from which the expected number of bits
stored by each of such users is given by µm(1−µ)K−mF . It
follows that, as F → ∞, the expected size of Wl,T̃ is given
by

µm(1− µ)K−mF + o(F ) (41)

where the term o(F ) is omitted in the following calculations.
Since there is a total of

(
K
m

)
subsets of m users, we have(

K
m

)
µm(1 − µ)K−mF bits of each file which are cached by

exactly m users.
Now we proceed to calculated the number of bits of the file

Wdi , which are stored by exactly m users, which have to be
delivered to user i. Recall that user i already has all subfiles
Wdi,T̃ , with |T̃ | = m and i ∈ T̃ , pre-stored. Hence, user i
already has

(
K−1
m−1

)
µm(1 − µ)K−mF bits of Wdi which are

cached in exactly m users. Hence, the number of unavailable
bits, contained in all subfiles Wdi,T̃ with |T̃ | = m and i /∈ T̃ ,
is given by

(
K−1
m

)
µm(1− µ)K−mF . Since there are K users

in total, the total number of files (obtained after normalizing
by F ) which have to be delivered during the m-th sub-phase
is given by

K

(
K − 1

m

)
µm(1− µ)K−m. (42)

A portion q(m) = (1+m)(α−β)
(1+m)(α−β)+K(1−(α−β)) of such files are

delivered with coded-multicasting gain 1 + m (i.e. simulta-
neously useful for 1 + m users) over the common codeword
with GDoF (α−β) files per time-slot. On the other hand, the
remaining portion of 1 − q(m) is delivered over the private
codewords with GDoF K (1− (α− β)) files per time-slot.
Hence, the delivery time of the m-th sub-phase is

K
(
K−1
m

)
µm (1− µ)

K−m

K(1− (α− β)) + (1 +m)(α− β)
. (43)

By summing over all K sub-phases, the total delivery time is
given by

GNDTD(µ, α, β)=K

K−1∑
m=0

(
K−1
m

)
µm (1− µ)

K−m

K(1− (α− β))+(1+m)(α− β)
.

(44)
It follows that the corresponding GDoF given by
GDoFD(µ, α, β) is achievable.

B. Converse

In this part, we prove the converse in (17), which is achieved
by showing order-optimality of GNDTD(µ, α, β), i.e.

GNDTD(µ, α, β)

GNDT(µ, α, β)
≤ 12.

As in the centralized setting, GNDTD(µ, α, β) only depends
on the difference δ = (α− β). Therefore, we work with

GNDTD(µ, δ) , K

K−1∑
m=0

(
K−1
m

)
µm (1− µ)

K−m

K(1− δ) + (1 +m)δ
(45)



11

where GNDTD(µ, δ = α − β) = GNDTD(µ, α, β). Unlike
GNDTC(µ, δ) in (38), GNDTD(µ, δ) does not have the de-
sirable form which allows comparing it to the bound in (40)
directly. Hence, the first (key) step of the converse is to derive
an upper bound on GNDTD(µ, δ), denoted by GNDTub

D (µ, δ),
which takes the form of the centralized achievable delivery
time in (38). This is given in the following result.

Lemma 3. The decentralized delivery time GNDTD(µ, δ) is
bounded above as

GNDTD(µ, δ) ≤ GNDTub
D (µ, δ) =

K (1− µ)

K(1− δ) + (1 + u)δ
(46)

where u is given by

u =
K (1− µ)

GNDTD(µ, 1)
− 1. (47)

The proof of Lemma 3 is given in Appendix D. One
important consequence of Lemma 3 is that the expression in
(46) allows us to show order-optimality of GNDTub

D (µ, δ) to
within a factor of 12 using similar techniques to the ones
used for the centralized setting. The details are relegated
to Appendix C-B. The order-optimality of GNDTD(µ, δ) to
within a factor of 12 follows, which concludes the converse.

C. Gap Between Decentralized and Centralized Schemes

From a straightforward inspection of (38) and (46), it can
be seen that for integer values of Kµ (for which a close form
of GNDTC(µ, δ) is obtained), we have

GDoFC(µ, δ)

GDoFD(µ, δ)
=

GNDTD(µ, δ)

GNDTC(µ, δ)
≤ K(1− δ) + (Kµ+ 1)δ

K(1− δ) + (u+ 1)δ
.

(48)
We know that when δ = 1 (i.e. α = 1 and β = 0), all spatial
multiplexing gains are lost and the achievable delivery times
collapse to the ones in [4], [5]. Hence, it follows from the
observations in [5] (and then the proof in [32]) that for δ = 1,
there is a small price to pay due to decentralization, making
the ratio in (48) small. By further examining the bound on the
right-most side of (48), it can be seen that it decreases when δ
decreases, hence further reducing the price of decentralization.
For example, such price is minimal when δ = 0 (i.e. α = β),
where both the centralized and decentralized strategies achieve
the optimal delivery GNDT(µ, α, β = α) = 1 − µ. This
is intuitive as with a decreased δ, the system starts to rely
more on spatial multiplexing gains and local caching gains
and less on global caching gains, which are affected by
decentralization. Concretely, the gap in (48) is bounded above
as follows.

Corollary 1. For any δ ∈ [0, 1] and µ ∈ [0, 1], we have

GDoFC(µ, δ)

GDoFD(µ, δ)
≤ 1.5. (49)

The above corollary is obtained by employing the results in
Theorem 1, Lemma 3 and [32]. The full proof is relegated to
Appendix E.

VII. CONCLUSIONS

In this paper, we characterized the optimal GDoF of the
symmetric cache-aided MISO BC under partial CSIT up to a
constant multiplicative factor. Moreover, we showed that such
GDoF characterization is robust to decentralization, i.e. we
proposed a decentralized caching strategy which attains an
order-optimal GDoF performance. In order to derive the GDoF
results, we introduced the generalized normalized delivery
time (GNDT) metric, which extends the normalized delivery
time (NDT) metric in the same way the GDoF extends the
DoF. The GNDT is related to the reciprocal of the GDoF, and
is generally easier to deal with when characterizing achievable
and optimal performances.

At the heart of our converse proof is a GDoF outer bound
for a parallel MISO BC with partial CSIT, which extends a
family of robust outer bounds based on the aligned image
sets approach, initially developed in the context of classical
networks with no caches, to cache-aided networks. On the
other hand, we showed that the order optimal GDoF takes
a familiar weighted-sum form, often observed in classical
networks (with no caches) under partial CSIT. Achieving such
GDoF relies on a key interplay between spatial multiplexing
and coded-multicasting gains.

This work opens the door for a number of interesting
extensions. An intriguing direction is to consider a setting
in which each transmitter can only store part of the library,
hence enabling only partial transmitter cooperation as opposed
to the full cooperation assumed in this work (e.g. general
cache-aided interference networks). This setting generalizes
the works in [9], [10] to the GDoF framework under partial
CSIT considered in this paper. Progress along these lines is
reported in [17], while limiting to absent CSIT and considering
only achievability. As observed in [9], [10], under such partial
cooperating (through caching at the transmitters), the underly-
ing physical channel is modeled by the X channel. Hence, it is
worthwhile highlighting in this context that for the X channel,
the GDoF under partial CSIT is still an open problem. Another
interesting direction is relaxing the symmetry in the channel.
However, one major difficulty here is the potential explosion
in the number of channel parameters. Therefore it is not sur-
prising that such asymmetric GDoF characterizations are still
open even in classical networks [23], [30]. Last but no least,
reducing the constant multiplicative factor of 12 is also of
significant interest. For the original shared-link setting, recent
efforts managed to reduce the constant multiplicative factor
[33], [34]. Our observations through numerical simulations,
which show that the gap is much smaller than 12, provide
hope that such tightening may also be possible for the order-
optimal characterizations presented in this paper.

APPENDIX A
PROOF OF LEMMA 1

The proof is based on the approach in [20], [22], [23],
where outer bounds under finite precision and partial CSIT
are derived. We follow the same overall steps in these works,
while specializing to the specific setup considered here. For
simplicity and notational briefness, we focus on real channels.
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The extension to complex channels follows along the lines of
[20], [22]. We consider s = K users. For general s ≤ K,
the exact same steps follow while considering only the corre-
sponding s rate bounds.

A. Deterministic Channel Model

The first step is to convert the channel into a deterministic
equivalent with inputs and outputs all being integers. This is
given by

Ȳi(t) = bGii(t)X̄i(t)c+

K∑
j=1,j 6=i

bP̄α−1Gij(t)X̄j(t)c (50)

B̄i(t) = Āi(t) (51)

where P̄ =
√
P , X̄i(t) ∈ {0, 1, . . . , bP̄ c} and Āi(t) ∈

{0, 1, . . . , bP̄ γc}, ∀i ∈ [K]. It can be shown that a GDoF
upper bound for the deterministic channel is also a GDoF
upper bound for the original channel using the same steps
in [20]. Therefore we focus on the deterministic channel
henceforth.

B. Fanos Inequality and Differences of Entropies

For notational brevity, we define Mi ,
(
Wd1

i
, . . . ,W

d
bN/sc
i

)
to denote the set of messages to be delivered to user i.
Moreover, we define M[i:K] , Mi, . . . ,MK . Using Fano’s
inequality, for user k we have

nRk ≤ I
(
Mk; Ȳ nk , B̄

n
k |M[k+1:K],G

)
+ o(n) (52)

≤ H
(
Ȳ nk , B̄

n
k |M[k+1:K],G

)
−H

(
Ȳ nk , B̄

n
k |M[k:K],G

)
+ o(n). (53)

After omitting o(n) and o (log(P )) terms, we obtain

n

K∑
k=1

Rk ≤ n(1 + γ) log(P̄ ) +

K∑
k=2

H
(
Ȳ nk−1, B̄

n
k−1 |M[k:K],G

)
−H

(
Ȳ nk , B̄

n
k |M[k:K],G

)︸ ︷︷ ︸
H∆

k

.

(54)

Hence, the focus becomes to bound the differences of entropies
H∆

2 , . . . ,H
∆
K .

C. Bounding the Differences of Entropies

Focusing on the term H∆
k , for any k ∈ [2 : K], we proceed

as follows:

H∆
k =

H
(
Ȳ nk−1, B̄

n
k−1 |M[k:K],G

)
−H

(
Ȳ nk , B̄

n
k |M[k:K],G

)
(55)

= H
(
Ȳ nk−1 |M[k:K],G

)
−H

(
Ȳ nk |M[k:K],G

)
+H

(
B̄nk−1 |M[k:K],G, Ȳ

[n]
k−1

)
−H

(
B̄nk |M[k:K],G, Ȳ nk

)
(56)

≤H
(
Ȳ nk−1 |M[k:K],G

)
−H

(
Ȳ nk |M[k:K],G

)
+nlog

(
P̄ γ+1

)
.

(57)

In the above, (56) is obtained from the chain rule, while (57)
follows from H

(
B̄nk | M[k:K],G, Ȳ nk

)
≥ 0 and H

(
B̄nk−1 |

M[k:K],G, Ȳ nk−1

)
≤ H

(
B̄nk−1

)
≤
∑n
t=1H

(
B̄k−1(t)

)
≤

n log
(
P̄ γ + 1

)
. Now it remains to bound the difference of

entropies H
(
Ȳ nk−1 |M[k:K],G

)
− H

(
Ȳ nk |M[k:K],G

)
under

partial CSIT and the bounded density assumptions as described
in Section II-A2. This difference is bounded above as

H
(
Ȳ nk−1 |M[k:K],G

)
−H

(
Ȳ nk |M[k:K],G

)
≤

n
(
1− (α− β)

)
log(P̄ ) + o

(
log(P̄ )

)
. (58)

The inequality in (58) follows directly from [23] (see the
proofs of [23, Th. 1] and [23, Th. 2]), and is obtained using
the aligned image sets approach [20]. Intuitively, under perfect
CSIT (i.e. β = α), the transmitter uses zero-forcing to create
a maximal difference of entropies, in a GDoF sense, between
Ȳ nk−1 and Ȳ nk . On the other hand, when all paths have equal
strengths and the CSIT is limited to finite precision (i.e.
α = 1 and β = 0), a positive difference of entropies in a
GDoF sense cannot be created. Between the two extremes, the
transmitter benefits from path-loss and partial CSIT, through
power control and zero-forcing, to create a positive difference
of entropies which is bounded above by 1, in a GDoF sense.

By combining the bounds in (58) and (57), we obtain

H∆
k ≤ n

(
γ + 1− (α− β)

)
log(P̄ ) + o

(
log(P̄ )

)
. (59)

The bound in (59) holds for all k ∈ [2 : K]. By plugging (59)
into (54), the result in (24) directly follows.

APPENDIX B
PROOF OF LEMMA 2

First, we rewrite the signal model in (4) in vector form as

Yi=
√
P [Ĝi1 · · · ĜiK ]QiX+

√
P 1−β [G̃i1 · · · G̃iK ]QiX+Zi

(60)
where X , [X1 · · ·XK ]T is the signal transmitted from
the K transmitters and Qi is a K × K diagonal matrix
with 1 as the (i, i)-th entry and

√
Pα−1 as the remaining

diagonal entries. Note that we ignore the time index for
brevity. The messages W (c) and W (p)

1 , . . . ,W
(p)
K are encoded

into unit power independent Gaussian codewords X(c) and
X

(p)
1 , . . . , X

(p)
K , respectively. The transmitted signal is then

constructed as

X = D

(√
1− P β−αV(c)X(c)+

√
P β−α

K∑
k=1

V
(p)
k X

(p)
k

)
.

(61)
In the above, D is a K×K diagonal matrix where the (j, j)-
th entry is O(1) in P , and is chosen such that the power
constraint E

(
|Xj |2

)
≤ 1 is not violated. V(c) is a generic

(random) unit vector and V
(p)
k ,

[
V

(p)
k1 · · ·V (p)

kK

]T
is a zero-

forcing unit vector designed using the channel estimates such
that
√
Pα
(
Ĝi1V

(p)
k1 +· · ·+

√
P 1−αĜiiV

(p)
ki +· · ·+ ĜiKV

(p)
kK

)
= 0, ∀i 6= k. (62)

It is simple to verify from the zero-forcing condition that V (p)
ki

cannot scale faster than O(
√
Pα−1) for all k 6= i. Hence, the
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received signal of user i is rewritten as

Yi=
√
Pa

(c)
i X(c)+

√
P 1+β−αa

(p)
ii X

(p)
i +

K∑
k=1,k 6=i

a
(p)
ik X

(p)
k +Zi

(63)
where a(c)

i and a(p)
ik , for all i, k ∈ [K], are all O(1).

Each user i decodes X(c) by treating interference as noise
and recovers W (c). As X(c) is received with power O(P ),
while interference plus noise has power O(P 1+β−α), it fol-
lows that X(c) supports a rate of (α−β) log(P )+o

(
log(P )

)
.

Then, each user i proceeds to remove the contribution of X(c)

from the received signal and decodes its own X
(p)
i while

treating the remaining interference as noise, from which W (p)
i

is recovered. As X(p)
i is received with power O(P 1+β−α),

while the remaining interference plus noise has power O(1),
it follows that X(p)

i supports a rate of (1 + β − α) log(P ) +
o
(

log(P )
)
.

Remark 2. It is worthwhile highlighting that the achievable
GDoF in Lemma 2 (shown in this appendix) can be inferred
from [23]. One key difference, however, is that the MISO
BC considered in [23] has private messages only, and rate-
splitting is used to multicast part of the private messages as
a common codeword decoded by all users. This relationship
between the MISO BC with private messages and its coun-
terpart with a common message under partial CSIT was first
observed in [25].

APPENDIX C
PROOFS OF ORDER OPTIMALITY

Here we provide proofs for the order-optimality parts of
Theorem 1 and Theorem 2. We start with an instrumental
lemma used throughout the proofs in the following subsec-
tions.

Lemma 4. For parameters K,µ and s defined previously, if
K

s(1+Kµ) ≥ 1, then the function given by

f(δ;K,µ, s) =
1 + (s− 1)(1− δ)

K(1− δ) + (1 +Kµ)δ
(64)

is non-decreasing in δ ∈ [0, 1].

Proof: The derivative of f(δ;K,µ, s) with respect to δ

is given by df
dδ = − s(1+Kµ)−K

(K(1−δ)+(1+Kµ)δ)2 , which is non-negative
for K ≥ s(1 +Kµ).

A. Order Optimality of GNDTC(µ, δ)

We show here that for any µ, there exists a particular
s ∈ [K] such that GNDTC(µ, δ)/GNDTlb

s (µ, δ) ≤ 12 for all
δ ∈ [0, 1]. We handle the two cases K ≤ 12 and K ≥ 13 sepa-
rately. Starting with K ≤ 12, consider a generic δ ∈ [0, 1]. By
setting s = 1 in (19), we get that GNDTlb

1 (µ, δ) = 1− µ. On
the other hand, GNDTC(µ, δ) ≤ GNDTC(µ, 1) ≤ K(1− µ).
Hence, GNDTC(µ, δ)/GNDTlb

1 (µ, δ) ≤ 12.
Next, we consider K ≥ 13. As in [4], we split the problem

in three sub-cases: the sub-case 0 ≤ µ ≤ 1.1
K , the sub-case

1.1
K < µ ≤ 0.092 and the sub-case 0.092 < µ ≤ 1. We start

with 0 ≤ µ ≤ 1.1
K . For δ = 1, we have GNDTC(µ, 1) ≤

GNDTC(0, 1) = K. By setting s = b0.275Kc, we know from
[4] that GNDTlb

s (µ, 1) ≥ K/12. On the other hand, for a
generic δ ∈ [0, 1], the following upper bound holds

GNDTC(µ, δ)

GNDTlb
s (µ, δ)

≤ GNDTC(0, δ)

GNDTlb
s (µ, δ)

=
1 + (s− 1)(1− δ)
K(1− δ) + δ︸ ︷︷ ︸
f(δ;K,0,s)

· K

s

(
1− M

bN
s c

) . (65)

Since K
s ≥ 1

0.275 > 1, from Lemma 4 it follows that
f(δ;K, 0, s) is non-decreasing in δ ∈ [0, 1]. Hence,

GNDTC(µ, δ)

GNDTlb
s (µ, δ)

≤ GNDTC(0, δ)

GNDTlb
s (µ, δ)

≤ GNDTC(0, 1)

GNDTlb
s (µ, 1)

≤ 12.

(66)
We proceed to the sub-case 1.1

K < µ ≤ 0.092. Let µ̃ be the
largest number in [0, µ] such that Kµ̃ is an integer. We know
from [4] that GNDTC(µ, 1) ≤ GNDTC(µ̃, 1) ≤ 1

µ . By setting

s =
⌊

0.3
µ

⌋
, we also know from [4] that GNDTlb

s (µ, 1) ≥ 1
12µ .

Considering a generic δ ∈ [0, 1], we write

GNDTC(µ, δ)

GNDTlb
s (µ, δ)

≤ GNDTC(µ̃, δ)

GNDTlb
s (µ, δ)

=
1 + (s− 1)(1− δ)

K(1− δ) + (1 +Kµ̃)δ︸ ︷︷ ︸
f(δ;K,µ̃,s)

· K (1− µ̃)

s

(
1− M

bN
s c

) . (67)

As K
s(1+Kµ̃) ≥

1
0.3

Kµ
1+Kµ > 1, Lemma 4 implies that

f(δ;K, µ̃, s) is non-decreasing in δ ∈ [0, 1]. Hence,

GNDTC(µ, δ)

GNDTlb
s (µ, δ)

≤ GNDTC(µ̃, δ)

GNDTlb
s (µ, δ)

≤ GNDTC(µ̃, 1)

GNDTlb
s (µ, 1)

≤ 12.

(68)
Finally, we look at the sub-case 0.092 < µ ≤ 1 and

we consider a generic δ ∈ [0, 1]. By setting s = 1, we
get GNDTlb

1 (µ, δ) = 1 − µ. Moreover, from [4], we know
that GNDTC(µ, δ) ≤ GNDTC(µ, 1) ≤ 12(1 − µ). Hence
GNDTC(µ, δ)/GNDTlb

1 (µ, δ) ≤ 12. This concludes the proof.

B. Order Optimality of GNDTD(µ, δ)

As for the centralized setting, we show that for
any µ, there exists a particular s ∈ [K] such that
GNDTub

D (µ, δ)/GNDTlb
s (µ, δ) ≤ 12 for all δ ∈ [0, 1]. We start

with the following lemma.

Lemma 5. The value u, defined in (47), satisfies u ≤ Kµ for
all µ ∈ [0, 1).

Proof: We focus on µ > 0 as u = 0 for µ = 0. By
definition of u in (47), we have

K(1− µ)

Kµ

(
1− (1− µ)

K
)

=
K(1− µ)

1 + u
(69)

which follows from

GNDTD(µ, 1) =
K(1− µ)

Kµ

(
1− (1− µ)

K
)
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as shown in [5]. Hence, showing that u ≤ Kµ it is equivalent
to showing that

K(1− µ)

Kµ

(
1− (1− µ)K

)
≥ K(1− µ)

1 +Kµ
(70)

⇒ (Kµ+ 1)
(
1− (1− µ)K

)
≥ Kµ (71)

⇒ 1 ≥ (Kµ+ 1)(1− µ)K . (72)

The inequality in (72) is shown to hold by observing that
µ > 0 and Kµ + 1 ≤ (1 + µ)K , from which we obtain
(Kµ + 1)(1 − µ)K ≤ (1 + µ)K(1 − µ)K = (1 − µ2)K ≤ 1.
Hence, u ≤ Kµ holds.

Equipped with Lemma 5, the remainder of the proof fol-
lows the same procedures in Appendix C-A. In particular,
we consider the two cases K ≤ 12 and K ≥ 13. For
the case K ≤ 12, by setting s = 1 in (19), we get
that GNDTlb

1 (µ, δ) = 1 − µ. On the other hand, we have
GNDTub

D (µ, δ) ≤ GNDTub
D (µ, 1) ≤ K(1− µ). It follows that

GNDTub
D (µ, δ)/GNDTlb

1 (µ, δ) ≤ 12.
Next, we focus on K ≥ 13. As in [5], we consider three

separate sub-cases: the sub-case 0 ≤ µ ≤ 1/K, the sub-case
1/K < µ ≤ 1/12 and the sub-case 1/12 < µ ≤ 1. We look
at the sub-case 0 ≤ µ ≤ 1/K first. For δ = 1, we have
GNDTub

D (µ, 1) ≤ K, and by setting s = bK/4c, we obtain
GNDTlb

s (µ, 1) ≥ 1
12K from [5]. On the other hand, for a

generic δ ∈ [0, 1], we have

GNDTub
D (µ, δ)

GNDTlb
s (µ, δ)

=
1 + (s− 1)(1− δ)
K(1− δ) + (1 + u)δ︸ ︷︷ ︸

f(δ;K,u/K,s)

· K (1− µ)

s

(
1− M

bN
s c

) .
(73)

By applying Lemma 5 to lower bound the value of u, we can
write K

s(1+u) ≥
K

K
4 ·(1+Kµ)

> 1. Hence, from Lemma 4, the
function f(δ;K,u/K, s) is non-decreasing in δ ∈ [0, 1]. It
follows that

GNDTub
D (µ, δ)

GNDTlb
s (µ, δ)

≤ GNDTub
D (µ, 1)

GNDTlb
s (µ, 1)

≤ 12. (74)

Next, we consider the sub-case 1
K < µ ≤ 1

12 . From [5], we
have GNDTub

D (µ, 1) ≤ 1
µ , and by setting s =

⌊
1

4µ

⌋
, we have

GNDTlb
s (µ, 1) ≥ 1

12µ . For a generic δ ∈ [0, 1], we have

GNDTub
D (µ, δ)

GNDTlb
s (µ, δ)

=
1 + (s− 1)(1− δ)
K(1− δ) + (1 + u)δ︸ ︷︷ ︸

f(δ;K,u/K,s)

· K (1− µ)

s

(
1− M

bN
s c

) .
(75)

By applying Lemma 5, it follows that K
s(1+u) ≥ 4 · Kµ

1+Kµ > 1.
Hence, from Lemma 4, f(δ;K,u/K, s) is non-decreasing in
δ ∈ [0, 1]. Therefore, the statement in (74) holds here as well.

Finally, we consider the remaining sub-case 1/12 < µ ≤
1 for a generic δ ∈ [0, 1]. By setting s = 1, we get
GNDTlb

1 (µ, δ) = 1 − µ. Moreover, from [5], we know
that GNDTub

D (µ, δ) ≤ GNDTub
D (µ, 1) ≤ 1

µ − 1. Hence,
GNDTub

D (µ, δ)/GNDTlb
1 (µ, δ) ≤ 12. This concludes the

proof.

APPENDIX D
PROOF OF LEMMA 3

It readily seen from the definition of u in (47) that
GNDTD(µ, 1) = GNDTub

D (µ, 1). It is also easy to verify
that GNDTD(µ, 0) = GNDTub

D (µ, 0) and GNDTub
D (1, δ) =

GNDTD(1, δ) = 0. Therefore, we focus on δ ∈ (0, 1) and
µ ∈ [0, 1). We define bm, m ∈ {0, 1, . . . ,K − 1}, such that

bm =
K
(
K−1
m

)
µm(1− µ)K−m

K(1− µ)
. (76)

It can be shown that
∑K−1
m=0 bm = 1 as follows

K−1∑
m=0

bm =
1

K(1− µ)

K−1∑
m=0

K

(
K − 1

m

)
µm(1− µ)K−m (77)

=

K−1∑
m=0

(
K − 1

m

)
µm(1− µ)K−1−m = 1 (78)

where (78) follows from the binomial identity7. Hence, the
inequality in (46) is equivalently written as

K−1∑
m=0

bm
K(1− δ) + (1 +m)δ

≤ 1

K(1− δ) + (1 + u)δ
(79)

⇒
K−1∑
m=0

bm
cm + v

≤ 1

c̃+ v
. (80)

where v , K(1 − δ), cm , (1 + m)δ and c̃ , (1 + u)δ. By
rearrangement of (80), we obtain

(c̃′ + 1)

K−1∑
m=0

bm
c′m + 1

≤ 1. (81)

where c̃′ = c̃/v and c′m = cm/v By the definition of u in
(47), for any δ ∈ (0, 1), we have

K−1∑
m=0

bm
(1 +m)δ

=
1

(1 + u)δ
(82)

⇒
K−1∑
m=0

bm
cm

=
1

c̃
(83)

⇒
K−1∑
m=0

bm
c′m

=
1

c̃′
. (84)

By plugging c̃′ from (84) into (81), we obtain 1∑K−1
m=0

bm
c′m

+ 1

K−1∑
m=0

bm
c′m + 1

≤ 1. (85)

Hence, showing that (85) holds implies that (46) holds for
δ ∈ (0, 1). This is shown next.

Let us define the function f(v) = v
1+v , which is concave

in R+ \{0}. Moreover, consider the points
{

1
c′0
, . . . , 1

c′K−1

}
in

R+ \ {0}. From
∑K−1
m=0 bm = 1, which is obtained from (78),

and by applying Jensen’s inequality, we have
K−1∑
m=0

bmf

(
1

c′m

)
≤ f

(
K−1∑
m=0

bm
c′m

)
(86)

7Note that the binomial identity is given by (a+b)n =
∑n

r=0

(n
r

)
arbn−r .
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⇒
K−1∑
m=0

bm
1

c′m + 1
≤

∑n
i=1

bm
c′m∑K−1

m=0
bm
c′m

+ 1
(87)

⇒

∑K−1
m=0

bm
c′m

+ 1∑K−1
m=0

bm
c′m

(K−1∑
m=0

bm
c′m + 1

)
≤ 1 (88)

⇒

 1∑K−1
m=0

bm
c′m

+ 1

K−1∑
m=0

bm
c′m + 1

≤ 1 (89)

which is the inequality in (85). This concludes the proof.

APPENDIX E
PROOF OF COROLLARY 1

First, for µ = 0 we have GDoFC(0, δ) = GDoFD(0, δ) =
K(1 − δ) + δ, while for µ = 1 we have GNDTC(1, δ) =
GNDTD(1, δ) = 0. Therefore, we focus on µ ∈ (0, 1) in what
follows. The multiplicative factor of 1.5 in (49) can be shown
by considering the three following cases:

1) K ≥ 3: From Theorem 1, it follows that GDoFC(µ, δ) is
bounded above by

GDoFC(µ, δ) ≤ (1− δ) K

1− µ
+ δ

1 +Kµ

1− µ
(90)

where (90) holds with equality for µ ∈
{0, 1

K ,
2
K , . . . ,

K−1
K }, as expressed in (13). For the

remaining points in µ ∈ [0, 1], the achievable GDoF
upper bound in (90) follows from

GNDTC(µ, δ) ≥ K(1− µ)

K(1− δ) + (1 +Kµ)δ
(91)

which in turn holds as K(1−µ)
K(1−δ)+(1+Kµ)δ is convex in

µ and GNDTC(µ, δ) is the lower convex envelope (see
(10)). From Lemma 3, a lower bound for GDoFD(µ, δ)
is given by

GDoFD(µ, δ) ≥ (1− δ) K

1− µ
+ δ

1 + u

1− µ
(92)

where 1+u = K(1−µ)
GNDTD(µ,1) from (47). From [5], we know

that GNDTD(µ, 1) can be written as

GNDTD(µ, 1) =
1− µ
µ

(
1− (1− µ)K

)
. (93)

It follows that 1 + u is given by

1 + u =
Kµ

1− (1− µ)K
. (94)

From (90) and (92), the ratio between GDoFC(µ, δ) and
GDoFD(µ, δ) is bounded above as

GDoFC(µ, δ)

GDoFD(µ, δ)
≤ (1−δ)K+δ(1+Kµ)

(1−δ)K+δ(1+u)
≤ 1+Kµ

1 + u
. (95)

where the rightmost inequality in (95) follows from
u ≤ Kµ, which in turn is obtained from Lemma 5 in
Appendix C-B. By plugging (94) into (95), we obtain

1 +Kµ

1 + u
=

1 +Kµ

Kµ

(
1− (1− µ)K

)
≤ 1.5 (96)

where the bound by 1.5 follows from [32, Lem. 1].

2) K = 2: For this case, we consider the two following
subcases:
• µ ∈ (0, 1/2]: For this interval, we employ the same

bounding techniques used for the case K ≥ 3. Hence,
from (95) and (96) we obtain

GDoFC(µ, δ)

GDoFD(µ, δ)
≤ 1 + 2µ

2µ

(
1− (1− µ)2

)
. (97)

It is readily seen that the right-hand-side of (97),
which we denote as g(µ), is a concave parabola with
a maximum at µ = 3/4. Given the symmetry of the
parabola, it follows that that g(µ) ≤ g(1/2) = 1.5
for µ ∈ (0, 1/2].

• µ ∈ [1/2, 1): For this interval, the bounding tech-
niques used for the case K ≥ 3 are loose. Alterna-
tively, it can be easily shown from Theorem 1 that
GDoFC(µ, δ) = 2

1−µ . Combining this with the upper
bound for GDoFD(µ, δ) in (92), we obtain

GDoFC(µ, δ)

GDoFD(µ, δ)
≤ 2

2(1− δ) + (1 + u)δ
≤ 2

1 + u
(98)

where the rightmost inequality in (98) follows from
the fact that 1 + u ≤ 2, which can be easily shown.
By plugging (94) into (98), we obtain

2

1 + u
=

1

µ

(
1− (1− µ)2

)
= 2− µ. (99)

It is readily seen that 2− µ ≤ 1.5 for µ ∈ [1/2, 1).
3) Case K = 1: In this case we have GNDTC(µ, δ) =

GNDTD(µ, δ) = 1− µ, hence (49) holds.
From the above three cases, the proof is complete. It is
worthwhile highlighting that for the case K = 2, δ = 1
and µ = 1/2, we have GDoFC(µ, δ)/GDoFD(µ, δ) = 1.5.
Therefore, 1.5 is in fact the tightest possible upper bound for
GDoFC(µ, δ)/GDoFD(µ, δ).
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science from the Université Catholique de Louvain, Louvain-la-Neuve, Bel-
gium, in 2000 and 2005, respectively. From 2006 to 2011, he was with
Samsung Electronics, Suwon, South Korea, where he actively contributed
to 3GPP LTE/LTE-A and IEEE 802.16m and acted as the Rapporteur for
the 3GPP Coordinated Multi-Point Study Item. From 2014 to 2016, he was
an Associate Professor with Korea University, Seoul, South Korea. He also
held visiting research appointments at Stanford University, EURECOM, the
National University of Singapore, and The University of Hong Kong. Since
2011, he has been with Imperial College London, first as a Lecturer from 2011
to 2015, and then as a Senior Lecturer from 2015 to 2017. He is currently a
Reader (Associate Professor) with the Electrical and Electronic Engineering
Department, Imperial College London, London, U.K.

Dr. Clerckx has authored two books, 150 peer-reviewed international re-
search papers, and 150 standards contributions, and is the inventor of 75 issued
or pending patents among which 15 have been adopted in the specifications
of 4G (3GPP LTE/LTE-A and IEEE 802.16m) standards. His research area
is communication theory and signal processing for wireless networks. He has
been a TPC member, a symposium chair, or a TPC chair of many symposia
on communication theory, signal processing for communication and wireless
communication for several leading international IEEE conferences. He is an
Elected Member of the IEEE Signal Processing Society SPCOM Technical
Committee. He served as an Editor for the IEEE TRANSACTIONS ON
COMMUNICATIONS from 2011 to 2015 and is currently an Editor for
the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and the
IEEE TRANSACTIONS ON SIGNAL PROCESSING. He has also been a
(lead) guest editor for special issues of the EURASIP Journal on Wireless
Communications and Networking, IEEE ACCESS and the IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS. He was an Editor for the
3GPP LTE-Advanced Standard Technical Report on CoMP.


