258 research outputs found

    Spectrum Sensing of DVB-T2 Signals in Multipath Channels for Cognitive Radio Networks

    Get PDF
    © 2018 VDE VERLAG GMBHIn this paper, spectrum sensing of digital video broadcasting-second generation terrestrial (DVB-T2) signals in different fading environments with energy detection (ED) is considered. ED is known to achieve an increased performance among low computational complexity detectors, but it is susceptible to noise uncertainty. By taking into consideration the edge pilot and scattered pilot periodicity in DVB-T2 signals, a low computational complex noise power estimator is proposed. It is shown analytically that the choice of detector depends on the environment, the detector requirements, the available prior knowledge and with the noise power estimator. Simulation confirm that with the noise power estimator, ED significantly outperforms the pilot correlation-based detectors. Simulation also show that the proposed scheme enables ED to obtain increased detection performance in fading channels

    Secure OFDM System Design for Wireless Communications

    Get PDF
    Wireless communications is widely employed in modern society and plays an increasingly important role in people\u27s daily life. The broadcast nature of radio propagation, however, causes wireless communications particularly vulnerable to malicious attacks, and leads to critical challenges in securing the wireless transmission. Motivated by the insufficiency of traditional approaches to secure wireless communications, physical layer security that is emerging as a complement to the traditional upper-layer security mechanisms is investigated in this dissertation. Five novel techniques toward the physical layer security of wireless communications are proposed. The first two techniques focus on the security risk assessment in wireless networks to enable a situation-awareness based transmission protection. The third and fourth techniques utilize wireless medium characteristics to enhance the built-in security of wireless communication systems, so as to prevent passive eavesdropping. The last technique provides an embedded confidential signaling link for secure transmitter-receiver interaction in OFDM systems

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Advanced Statistical Signal Processing Methods in Sensing, Detection, and Estimation for Communication Applications

    Get PDF
    The applications of wireless communications and digital signal processing have dramatically changed the way we live, work, and learn over decades. The requirement of higher throughput and ubiquitous connectivity for wireless communication systems has become prevalent nowadays. Signal sensing, detection and estimation have been prevalent in signal processing and communications for many years. The relevant studies deal with the processing of information-bearing signals for the purpose of information extraction. Nevertheless, new robust and efficient signal sensing, detection and estimation techniques are still in demand since there emerge more and more practical applications which rely on them. In this dissertation work, we proposed several novel signal sensing, detection and estimation schemes for wireless communications applications, such as spectrum sensing, symbol-detection/channel-estimation, and encoder identification. The associated theories and practice in robustness, computational complexity, and overall system performance evaluation are also provided

    Channel Estimation and ICI Cancelation in Vehicular Channels of OFDM Wireless Communication Systems

    Full text link
    Orthogonal frequency division multiplexing (OFDM) scheme increases bandwidth efficiency (BE) of data transmission and eliminates inter symbol interference (ISI). As a result, it has been widely used for wideband communication systems that have been developed during the past two decades and it can be a good candidate for the emerging communication systems such as fifth generation (5G) cellular networks with high carrier frequency and communication systems of high speed vehicles such as high speed trains (HSTs) and supersonic unmanned aircraft vehicles (UAVs). However, the employment of OFDM for those upcoming systems is challenging because of high Doppler shifts. High Doppler shift makes the wideband communication channel to be both frequency selective and time selective, doubly selective (DS), causes inter carrier interference (ICI) and destroys the orthogonality between the subcarriers of OFDM signal. In order to demodulate the signal in OFDM systems and mitigate ICIs, channel state information (CSI) is required. In this work, we deal with channel estimation (CE) and ICI cancellation in DS vehicular channels. The digitized model of the DS channels can be short and dense, or long and sparse. CE methods that perform well for short and dense channels are highly inefficient for long and sparse channels. As a result, for the latter type of channels, we proposed the employment of compressed sensing (CS) based schemes for estimating the channel. In addition, we extended our CE methods for multiple input multiple output (MIMO) scenarios. We evaluated the CE accuracy and data demodulation fidelity, along with the BE and computational complexity of our methods and compared the results with the previous CE procedures in different environments. The simulation results indicate that our proposed CE methods perform considerably better than the conventional CE schemes

    Compressive Sensing-Based Grant-Free Massive Access for 6G Massive Communication

    Full text link
    The advent of the sixth-generation (6G) of wireless communications has given rise to the necessity to connect vast quantities of heterogeneous wireless devices, which requires advanced system capabilities far beyond existing network architectures. In particular, such massive communication has been recognized as a prime driver that can empower the 6G vision of future ubiquitous connectivity, supporting Internet of Human-Machine-Things for which massive access is critical. This paper surveys the most recent advances toward massive access in both academic and industry communities, focusing primarily on the promising compressive sensing-based grant-free massive access paradigm. We first specify the limitations of existing random access schemes and reveal that the practical implementation of massive communication relies on a dramatically different random access paradigm from the current ones mainly designed for human-centric communications. Then, a compressive sensing-based grant-free massive access roadmap is presented, where the evolutions from single-antenna to large-scale antenna array-based base stations, from single-station to cooperative massive multiple-input multiple-output systems, and from unsourced to sourced random access scenarios are detailed. Finally, we discuss the key challenges and open issues to shed light on the potential future research directions of grant-free massive access.Comment: Accepted by IEEE IoT Journa
    corecore