1,574 research outputs found

    Novel Intrusion Detection using Probabilistic Neural Network and Adaptive Boosting

    Full text link
    This article applies Machine Learning techniques to solve Intrusion Detection problems within computer networks. Due to complex and dynamic nature of computer networks and hacking techniques, detecting malicious activities remains a challenging task for security experts, that is, currently available defense systems suffer from low detection capability and high number of false alarms. To overcome such performance limitations, we propose a novel Machine Learning algorithm, namely Boosted Subspace Probabilistic Neural Network (BSPNN), which integrates an adaptive boosting technique and a semi parametric neural network to obtain good tradeoff between accuracy and generality. As the result, learning bias and generalization variance can be significantly minimized. Substantial experiments on KDD 99 intrusion benchmark indicate that our model outperforms other state of the art learning algorithms, with significantly improved detection accuracy, minimal false alarms and relatively small computational complexity.Comment: 9 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact Factor 0.423, http://sites.google.com/site/ijcsis

    Innovative machine learning techniques for security detection problems

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Most of the currently available network security techniques cannot cope with the dynamic and increasingly complex nature of the attacks on distributed computer systems. Therefore, an automated and adaptive defensive tool is imperative for computer networks. Alongside the existing techniques for preventing intrusions such as encryption and firewalls, Intrusion Detection System (IDS) technology has established itself as an emerging field that is able to detect unauthorized access and abuse of computer systems from both internal users and external offenders. Most of the novel approaches in this field have adopted Artificial Intelligence (AI) technologies such as Artificial Neural Networks (ANN) to improve detection performance. The true power and advantage of ANN lie in its ability to represent both linear and non-linear underlying functions and learn these functions directly from the data being modeled. However, ANN is computationally expensive due to its demanding processing power and this leads to the overfitting problem, i.e. the network is unable to extrapolate accurately once the input is outside of the training data range. These limitations challenge security systems with low detection rate, high false alarm rate and excessive computation cost. In this research, a novel Machine Learning (ML) algorithm is developed to alleviate those difficulties of conventional detection techniques used in available IDS. By implementing Adaptive Boosting and Semi-parametric radial-basis-function neural networks, this model aims at minimizing learning bias (how well the model fits the available sample data) and generalization variance (how stable the model is for unseen instances) at an affordable cost of computation. The proposed method is applied to a set of Security Detection Problems which aim to detect security breaches within computer networks. In particular, we consider two benchmarking problems: intrusion detection and anti-spam filtering. It is empirically shown that our technique outperforms other state-of-the-art predictive algorithms in both of the problems, with significantly increased detection accuracy, minimal false alarms and relatively low computation

    ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN)

    Get PDF
    In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack) detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network) can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%

    A local feature engineering strategy to improve network anomaly detection

    Get PDF
    The dramatic increase in devices and services that has characterized modern societies in recent decades, boosted by the exponential growth of ever faster network connections and the predominant use of wireless connection technologies, has materialized a very crucial challenge in terms of security. The anomaly-based intrusion detection systems, which for a long time have represented some of the most efficient solutions to detect intrusion attempts on a network, have to face this new and more complicated scenario. Well-known problems, such as the difficulty of distinguishing legitimate activities from illegitimate ones due to their similar characteristics and their high degree of heterogeneity, today have become even more complex, considering the increase in the network activity. After providing an extensive overview of the scenario under consideration, this work proposes a Local Feature Engineering (LFE) strategy aimed to face such problems through the adoption of a data preprocessing strategy that reduces the number of possible network event patterns, increasing at the same time their characterization. Unlike the canonical feature engineering approaches, which take into account the entire dataset, it operates locally in the feature space of each single event. The experiments conducted on real-world data showed that this strategy, which is based on the introduction of new features and the discretization of their values, improves the performance of the canonical state-of-the-art solutions

    Ensemble Feature Learning-Based Event Classification for Cyber-Physical Security of the Smart Grid

    Get PDF
    The power grids are transforming into the cyber-physical smart grid with increasing two-way communications and abundant data flows. Despite the efficiency and reliability promised by this transformation, the growing threats and incidences of cyber attacks targeting the physical power systems have exposed severe vulnerabilities. To tackle such vulnerabilities, intrusion detection systems (IDS) are proposed to monitor threats for the cyber-physical security of electrical power and energy systems in the smart grid with increasing machine-to-machine communication. However, the multi-sourced, correlated, and often noise-contained data, which record various concurring cyber and physical events, are posing significant challenges to the accurate distinction by IDS among events of inadvertent and malignant natures. Hence, in this research, an ensemble learning-based feature learning and classification for cyber-physical smart grid are designed and implemented. The contribution of this research are (i) the design, implementation and evaluation of an ensemble learning-based attack classifier using extreme gradient boosting (XGBoost) to effectively detect and identify attack threats from the heterogeneous cyber-physical information in the smart grid; (ii) the design, implementation and evaluation of stacked denoising autoencoder (SDAE) to extract highlyrepresentative feature space that allow reconstruction of a noise-free input from noise-corrupted perturbations; (iii) the design, implementation and evaluation of a novel ensemble learning-based feature extractors that combine multiple autoencoder (AE) feature extractors and random forest base classifiers, so as to enable accurate reconstruction of each feature and reliable classification against malicious events. The simulation results validate the usefulness of ensemble learning approach in detecting malicious events in the cyber-physical smart grid

    Cascading Randomized Weighted Majority: A New Online Ensemble Learning Algorithm

    Full text link
    With the increasing volume of data in the world, the best approach for learning from this data is to exploit an online learning algorithm. Online ensemble methods are online algorithms which take advantage of an ensemble of classifiers to predict labels of data. Prediction with expert advice is a well-studied problem in the online ensemble learning literature. The Weighted Majority algorithm and the randomized weighted majority (RWM) are the most well-known solutions to this problem, aiming to converge to the best expert. Since among some expert, the best one does not necessarily have the minimum error in all regions of data space, defining specific regions and converging to the best expert in each of these regions will lead to a better result. In this paper, we aim to resolve this defect of RWM algorithms by proposing a novel online ensemble algorithm to the problem of prediction with expert advice. We propose a cascading version of RWM to achieve not only better experimental results but also a better error bound for sufficiently large datasets.Comment: 15 pages, 3 figure

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models

    Probabilistic XGBoost Threshold Classification with Autoencoder for Credit Card Fraud Detection

    Get PDF
    Due to the imbalanced data of outnumbered legitimate transactions than the fraudulent transaction, the detection of fraud is a challenging task to find an effective solution. In this study, autoencoder with probabilistic threshold shifting of XGBoost (AE-XGB) for credit card fraud detection is designed. Initially, AE-XGB employs autoencoder the prevalent dimensionality reduction technique to extract data features from latent space representation. Then the reconstructed lower dimensional features utilize eXtreame Gradient Boost (XGBoost), an ensemble boosting algorithm with probabilistic threshold to classify the data as fraudulent or legitimate. In addition to AE-XGB, other existing ensemble algorithms such as Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), Random Forest, Categorical Boosting (CatBoost), LightGBM and XGBoost are compared with optimal and default threshold. To validate the methodology, we used IEEE-CIS fraud detection dataset for our experiment. Class imbalance and high dimensionality characteristics of dataset reduce the performance of model hence the data is preprocessed and trained. To evaluate the performance of the model, evaluation indicators such as precision, recall, f1-score, g-mean and Mathews Correlation Coefficient (MCC) are accomplished. The findings revealed that the performance of the proposed AE-XGB model is effective in handling imbalanced data and able to detect fraudulent transactions with 90.4% of recall and 90.5% of f1-score from incoming new transactions
    • …
    corecore