178 research outputs found

    Hybrid analysis of nonlinear circuits: DAE models with indices zero and one

    Get PDF
    We extend in this paper some previous results concerning the differential-algebraic index of hybrid models of electrical and electronic circuits. Specifically, we present a comprehensive index characterization which holds without passivity requirements, in contrast to previous approaches, and which applies to nonlinear circuits composed of uncoupled, one-port devices. The index conditions, which are stated in terms of the forest structure of certain digraph minors, do not depend on the specific tree chosen in the formulation of the hybrid equations. Additionally, we show how to include memristors in hybrid circuit models; in this direction, we extend the index analysis to circuits including active memristors, which have been recently used in the design of nonlinear oscillators and chaotic circuits. We also discuss the extension of these results to circuits with controlled sources, making our framework of interest in the analysis of circuits with transistors, amplifiers, and other multiterminal devices

    Indiscernible topological variations in DAE networks

    Get PDF
    A problem of characterizing conditions under which a topological change in a network of differential–algebraic equations (DAEs) can go undetected is considered. It is shown that initial conditions for which topological changes are indiscernible belong to a generalized eigenspace shared by the nominal system and the system resulting from a topological change. A condition in terms of eigenvectors of the nominal system is derived to check for existence of possibly indiscernible topological changes. For homogeneous networks this condition simplifies to the existence of an eigenvector of the Laplacian of network having equal components. Lastly, a rank condition is derived which can be used to check if a topological change preserves regularity of the nominal network

    Stability results for constrained dynamical systems

    Get PDF
    Differential-Algebraic Equations (DAE) provide an appropriate framework to model and analyse dynamic systems with constraints. This framework facilitates modelling of the system behaviour through natural physical variables of the system, while preserving the topological constraints of the system. The main purpose of this dissertation is to investigate stability properties of two important classes of DAEs. We consider some special cases of Linear Time Invariant (LTI) DAEs with control inputs and outputs, and also a special class of Linear switched DAEs. In the first part of the thesis, we consider LTI systems, where we focus on two properties: passivity and a generalization of passivity and small gain theorems called mixed property. These properties play an important role in the control design of large-scale interconnected systems. An important bottleneck for a design based on the aforementioned properties is their verification. Hence we intend to develop easily verifiable conditions to check passivity and mixedness of Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) DAEs. For linear switched DAEs, we focus on the Lyapunov stability and this problem forms the basis for the second part of the thesis. In this part, we try to find conditions under which there exists a common Lyapunov function for all modes of the switched system, thus guaranteeing exponential stability of the switched system. These results are primarily developed for continuous-time systems. However, simulation and control design of a dynamic system requires a discrete-time representation of the system that we are interested in. Thus, it is critical to establish whether discrete-time systems, inherit fundamental properties of the continuous-time systems from which they are derived. Hence, the third part of our thesis is dedicated to the problems of preserving passivity, mixedness and Lyapunov stability under discretization. In this part, we examine several existing discretization methods and find conditions under which they preserve the stability properties discussed in the thesis

    Stability results for constrained dynamical systems

    Get PDF
    Differential-Algebraic Equations (DAE) provide an appropriate framework to model and analyse dynamic systems with constraints. This framework facilitates modelling of the system behaviour through natural physical variables of the system, while preserving the topological constraints of the system. The main purpose of this dissertation is to investigate stability properties of two important classes of DAEs. We consider some special cases of Linear Time Invariant (LTI) DAEs with control inputs and outputs, and also a special class of Linear switched DAEs. In the first part of the thesis, we consider LTI systems, where we focus on two properties: passivity and a generalization of passivity and small gain theorems called mixed property. These properties play an important role in the control design of large-scale interconnected systems. An important bottleneck for a design based on the aforementioned properties is their verification. Hence we intend to develop easily verifiable conditions to check passivity and mixedness of Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) DAEs. For linear switched DAEs, we focus on the Lyapunov stability and this problem forms the basis for the second part of the thesis. In this part, we try to find conditions under which there exists a common Lyapunov function for all modes of the switched system, thus guaranteeing exponential stability of the switched system. These results are primarily developed for continuous-time systems. However, simulation and control design of a dynamic system requires a discrete-time representation of the system that we are interested in. Thus, it is critical to establish whether discrete-time systems, inherit fundamental properties of the continuous-time systems from which they are derived. Hence, the third part of our thesis is dedicated to the problems of preserving passivity, mixedness and Lyapunov stability under discretization. In this part, we examine several existing discretization methods and find conditions under which they preserve the stability properties discussed in the thesis

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    Optimal control and approximations

    Get PDF

    Optimal control and approximations

    Get PDF
    • …
    corecore