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Abst rac t 

We extend in this paper some previous results concerning the differential-algebraic 
index of hybrid models of electrical and electronic circuits. Specifically, we present a 
comprehensive index characterization which holds without passivity requirements, in 
contrast to previous approaches, and which applies to nonlinear circuits composed of 
uncoupled, one-port devices. The index conditions, which are stated in terms of the 
forest-structure of certain digraph minors, do not depend on the specific tree chosen 
in the formulation of the hybrid equations. Additionally, we show how to include 
memristors in hybrid circuit models; in this direction, we extend the index analysis to 
circuits including active memristors, which have been recently used in the design of 
nonlinear oscillators and chaotic circuits. We also discuss the extension of these results 
to circuits with controlled sources, making our framework of interest in the analysis of 
circuits with transistors, amplifiers and other multiterminal devices. 

Keywords: differential-algebraic equation, index, electrical circuit, hybrid analysis, mem-

ristor. 

A M S subject classification: 05C50, 34A09, 94C05, 94C15. 



1 Introduction 

Differential-algebraic equations (DAEs), also known as singular, semistate or descriptor sys­
tems, have played a significant role in circuit analysis, power systems and controls in the last 
three decades. From the seminal works in the 1970s and 1980s (cf. the 1971 paper of Gear 
[26], the papers of Luenberger in the late 1970s [45, 46], the "Pitman books" of Campbell 
[11, 12], the 1981 paper of Newcomb [51], and the 1986 and 1989 special issues of Circuits, 
Systems, and Signal Processing [41, 42]), DAEs have played an increasingly significant role 
as a modelling and analysis tool within these fields. Recent applications are reported in 
[2, 4, 21, 35, 37, 44, 47, 55, 56, 57, 67, 70, 71, 72]. 

In this context, the index characterization of differential-algebraic models of electrical 
and electronic circuits is a central problem in circuit simulation [23, 27, 28, 59, 68]. This is 
due to the fact that the index has a critical impact in the numerical techniques to be used in 
the simulation of circuit dynamics. The index is also relevant with regard to other analytical 
aspects, related e.g. to the non-degeneracy of the circuit, the state formulation problem or 
different qualitative issues [15, 24, 31, 65]. The reader is referred to [8, 29, 40, 39, 54, 59] for 
detailed introductions to the different index notions in DAE theory. 

Much research in this direction has been focused on the characterization of the index 
of nodal models [22, 23, 59, 68]. This has been mainly motivated by the use of nodal 
techniques such as Modified Nodal Analysis (MNA) in circuit simulators, notably in SPICE 
and its commercial variants [27, 28, 55]. Under passivity assumptions, the index of nodal 
models is known to be not greater than two, according to the results in [23, 68]. 

By contrast, recent research has been focused on so-called hybrid models, whose origin can 
be traced back to [38] (cf. also [3, 7, 13, 30, 64]). The recent use of a differential-algebraic 
formalism to accommodate hybrid models has made it possible to show that their index 
does not exceed one in passive contexts [35, 36, 67], in contrast to MNA and other nodal 
techniques, for which certain configurations yield index two systems. This result, which 
reflects an index reduction implicit in the formulation of the model, is of great interest from 
the computational point of view, since index two DAEs are known to be more involved and 
to pose more difficulties than lower index problems, specially when they do not admit a 
Hessenberg form. 

However, the working setting of [35, 36, 67] assumes that the circuit devices are strictly 
locally passive; this means that the incremental circuit matrices are positive definite ev­
erywhere. This excludes, for instance, the nonlinear resistors arising in Van der Pol's type 
nonlinear oscillators or in Chua's circuit, just to name some very relevant examples; the pres­
ence of a locally active resistor supports the oscillatory or chaotic behavior (respectively) of 
such circuits. Additionally, many modern circuit devices such as tunnel diodes or Josephson 
junctions do not meet the passivity requirement at certain operating regions [17]. For these 
reasons it is important to extend the index analysis to non-passive contexts: this defines 
the first goal of the present paper. Actually, we will arrive at a virtually complete char­
acterization of the index of hybrid models of circuits composed of one-port (two-terminal) 
devices, as far as no coupling effects are displayed (cf. Theorems 1 and 2 in Section 4; it is 



worth mentioning that , by contrast, the index analysis of passive problems carried out in 

[35, 36, 67] accommodates coupled devices). We will also discuss how to extend our results 

to circuits with multiterminals and controlled sources, so that they can be used in circuits 

with transistors, amplifiers, etc. (cf. Example 3 in Section 6). 

Our second goal is to extend the formulation and the analysis of hybrid models to memris-

tive circuits. The memory-resistor or memristor is an electronic device defined by a nonlinear 

relation between the charge and the flux, and its existence was predicted by Leon Chua in 

1971 for symmetry reasons [14]. The report in 2008 of a nanoscale device with a memristive 

characteristic [66] had a great impact in electrical and electronic engineering and made the 

memristor and related devices a topic of active research (cf. [18, 19, 33, 34, 48, 53, 60, 61, 63] 

and references therein), which has been further motivated by the announcement of HP that 

commercial memory chips based on the memristor will be released in 2013 [1]. Including 

memristors in the study of analytical and numerical features of nonlinear circuits seems 

therefore to be important from both a theoretical and a practical perspective. Note that the 

index characterization here obtained will be of particular interest in the design of nonlinear 

oscillators and chaotic circuits including active memristors (cf. [5, 33, 50]). 

Our analysis will make a systematic use of the notion of a normal tree. The origin of 

this concept can be found in Bryant's work on the state formulation problem [10] and has 

been revisited since then in connection to different aspects of circuit analysis [36, 58, 62, 67]. 

Although the original notion of a normal tree is oriented to circuits with three types of devices 

(capacitors, resistors and inductors), the concept can be naturally extended to digraphs with 

an arbitrary number of branches' types. 

We will explore several basic features of normal trees in Section 2, which also includes 

some background material on digraph matrices. Section 3 presents a detailed derivation 

of the hybrid equations, whereas the index analysis for hybrid models of classical circuits 

(namely, circuits without memristors) is carried out in Section 4. The results are extended 

to circuits with memristors in Section 5. Section 6 discusses several examples, including a 

memristor oscillator, and suggests how our approach can be extended to problems with con­

trolled sources, enlarging the scope to transistor-based circuits. Finally, concluding remarks 

are compiled in Section 7. 

2 Digraph matrices and normal trees 

For the sake of readability in the derivation of the hybrid model in Section 3 and in the index 

analyses of Sections 4 and 5, we compile here the definition and some properties of the loop 

and cutset matrices of a given digraph, including the so-called fundamental ones constructed 

from a given tree or forest, together with some elementary remarks about normal trees. The 

reader is referred to [6, 20, 25, 43] for further details. 



2.1 Loop and cutset matrices 

Consider a directed graph Q with m branches, n nodes and k connected components. Chosen 

an orientation in every loop, the loop matrix B is defined as (hj), where 

( 1 if branch j is in loop i with the same orientation 

— 1 if branch j is in loop i with the opposite orientation 

0 if branch j is not in loop i. 

The rank of this matrix can be shown to equal m — n + k. A reduced loop matrix B is any 

((m — n + k) x m)-submatrix of B with full row rank. With terminological abuse, we will 

often refer to B simply as the loop matrix. 

A set of branches in a given digraph is a cutset if its removal increases the number of 

connected components of the digraph, and it is minimal with respect to this property, that is, 

the removal of any proper subset does not change the number of components. The removal 

of a cutset can be shown to split a connected component in two, and the orientation of the 

cutset is defined by directing it from one of these components towards the other. The cutset 

matrix Q = (qij) is then defined by 

( 1 if branch j is in cutset i with the same orientation 

— 1 if branch j is in cutset i with the opposite orientation 

0 if branch j is not in cutset i. 

The rank of Q can be proved to be n — k, and any set of n — k linearly independent rows of 
Q defines a reduced cutset matrix Q G R( ra- fc)xm. 

2.2 Fundamental matrices 

In a connected digraph, the choice of a spanning tree confers the loop and cutset matrices 

introduced above a special structure. This is a consequence of a widely-used property in 

circuit theory, according to which every cotree branch (or link) defines a unique loop together 

with some tree branches (twigs), and every twig defines a unique cutset together with some 

links. This way, the so-called fundamental matrices take the form 

B=(K I), Q = (I -KT). (1) 

The appearance of the same submatrix K in both B and Q (reading as — KT within the 

latter) follows from Tellegen's identity BQT = 0, which expresses the orthogonality of the 

so-called cycle and cut spaces. The same form holds for this matrices in non-connected 

digraphs once a (spanning) forest has been chosen. A spanning forest is defined by the 

choice of a minimal set of trees spanning every connected component of the digraph. Note 

that throughout the paper trees (in connected digraphs) and forests (in general) will be often 

understood to be spanning ones (that is, to include all nodes) without explicit mention. 

Lemma 1. Consider the pair of fundamental matrices depicted in (1). A full-row submatrix 

of Q (resp. of B) is non-singular if and only if its columns correspond to the branches of a 

forest (resp. a coforest). In this case, the determinants of these submatrices equal ± 1 . 



We will also make use of Kirchhoff's matrix tree theorem, stated in Lemma 2 below for 

the products QQT and BBT (provided that Q and B are fundamental matrices). This result 

can be easily derived from Lemma 1 and the Cauchy-Binet formula [32]. 

Lemma 2. Let B, Q stand for fundamental loop and cutset matrices of a digraph Q. Then 

the determinants det BBT and det QQT equal the total number of forests in Q. 

2.3 Normal trees 

In our analysis we will address problems in which the branches of Q are divided into p disjoint 

classes or types. We will number these types from 1 to p. When applied to circuit analysis, 

these types will correspond to branches with a different electrical nature. This taxonomy of 

branches makes it possible to define a special class of spanning trees, namely, the so-called 

normal trees, whose origin can be found in Bryant's work [10]. 

Given a digraph with p different types of branches, a normal tree is a spanning tree which 

verifies the following: it includes as many branches of type 1 as possible; among the ones 

satisfying the previous condition, it includes as many branches of type 2 as possible; among 

these, it includes as many branches of type 3 as possible, and so on, up to type p. 

By construction, the fundamental loop defined in a normal tree by a link of type i includes 

only branches of types j < i and, similarly, the cutset defined by a twig of type i is formed 

by branches of type j > i: the proof of this claim can be traced back at least to [9]. Within 

the corresponding loop and cutset matrices (1), this confers the block K the structure 
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to circuits with memristors. This hierarchy implies that the fundamental loop defined by 

a link capacitor will only include other capacitors, and the one defined by a link voltage-

controlled resistor will only have capacitors and/or voltage-controlled resistors; analogously, 

the fundamental cutset defined by an inductor will just include other inductors, and the one 

defined by a twig current-controlled resistor will only be formed by inductors and current-

controlled resistors. These properties are the key to the formulation of the hybrid model, 

which will be expressed in terms of the voltages of twig capacitors and voltage-controlled 

resistors and the currents of link inductors and current-controlled resistors. 

We will derive such models as a reduction of the system 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 
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where we express Kirchhoff laws using the loop and cutset matrices B, Q introduced in 

Section 2. The subscripts c, g, r and / correspond to capacitors, voltage-controlled resistors, 

current-controlled resistors and inductors, respectively. Capacitors (resp. inductors) are 

said to be uncoupled when C (resp. L) is diagonal and the z'-th diagonal entry depends 

only on the voltage (resp. the current) of the z'-th capacitor (resp. inductor). The maps h 

and / are C 1 and describe the characteristics of voltage-controlled and current-controlled 

resistors, respectively; we will denote by G(vg) = h'(vg) and R(ir) = f'(ir) the incremental 

conductance and resistance matrices (we will often omit the label "incremental" for these and 

for the capacitance and inductance matrices C(vc), L(i¡) without explicit mention). Voltage-

controlled (resp. current-controlled) resistors are uncoupled when the z'-th component of h 

(resp. / ) only depends on the voltage (resp. the current) of the z'-th voltage-controlled (resp. 

current-controlled) resistor. 

By using the normal tree referred to above, (3e) and (3f) read as 
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respectively; the subscripts tr and co specify tree and cotree elements. For later use, these 
relations can be explicitly written as 

vCco = -Knvctr (4a) 

vgco = -K2ivctr - K22vgtr (4b) 

vrco = ~K31vCtr - K32vgtr - K33vrtr (4c) 

vim = ~K41vCtr - K42vgtr - K43vrtr - Kuvkr (4d) 

and 

= KniCco + K2ligco + K3lirco + Klxilco (5a) 
•T • , TST • , TST 

ígtr = K22Í9co + K32irco + X 4 2^ c o (5b) 

Vtr = K33irro + X4^ico (5c) 

ihr = KiiKo- (5d) 

The steps which make it possible to derive the hybrid model, that is, to express the 
circuit equations just in terms of vCtr, vgtr, iTro and iiro, are the following. 

1. Recast (5a) by means of (3a) and (3c) as 

Ctr(vctr)v'ctr = KnCco(vCro)v'Cro + K2lhco{vgco) + K3liTco + K^ilro 

and further, using (4a) and (4b), as 

(Ctr(vctr) + KnCco(-KnvCtr)Kn)vCtr = K21hco(-K21vCtr - K22vgtr) + K31irco+ K41iico. (6) 

2. Analogously, (4d) can be rewritten, using (3b) and (3d), as 

Lco(iico)i'ico = ~K4ivCtr - K42vgtr - K43ftr(irtr) - KuLtr(iitT)i'itr 

which, via (5c) and (5d), reads as 

(Lco(iiro) + KuLtr(Kl4iiro)Kl4)i'lco = -K4lvCtr - K42vgtr - Ki3ftr(K33irco + Kj3ilco). (7) 

At this point, it is worth emphasizing that the elimination of vCco and iitr carried out in steps 
1 and 2 above is a key feature in the formulation of hybrid models. The elimination of these 
variables will prevent the index of these models from exceeding one. 

3. In turn, (5b) leads, via (3c), to 

htr(vgtr) = K22hco{vgco) + Ks2Írco + KJ2ÍICO 

and, using (4b), to 

htr(vgtr) = K22hco(-K2lvCtr - K22vgtr) + K32irco + Kj2ilco. (8) 



4. Finally, we will rewrite (4c) by means of (3d) as 

fco(irco) = -K:iivctr - K32vgtr - K33ftr(irtr) 

and in turn, via (5c), as 

fco(irco) = -K3ivctr - K32vgtr - K33ftr(K33irco + Kj3ilco). (9) 

Altogether, (6), (7), (8) and (9) yield the hybrid model 

(Ctr(vCtr) + KnCco(-KnvCtr)Kn)v'Ctr = K21hco(-K21vCtr - K22vgtr) + K31iTco + K41ilco (10a) 
rri rri rri rri 

{Lco{kco) + KuLtr(Kuiico)Ku)i'ico = -Knvctr - K42vgtr - Ki3ftr{K33irro + Ki3iico) (10b) 

htr(vgtr) = K22hco(-K21vCtr - K22vgtr) + K32iTco + K42ilco (10c) 

fco(irco) = ~K3ivCtr - K32vgtr - K33ftr{K33irco + Kj3iico). (10d) 

This is a differential-algebraic equation (DAE; cf. [8, 29, 40, 39, 54, 59]) of the form 

M(x)x' = Fi(x,y) (11a) 

0 = F2(x,y), (lib) 

where x = (vCtr,iico), y = (vgtr,irco), and 

M Ctr(Vctr) + KuCco(-KuVctr)Ku 
0 Lco(iico) + KuLtr(Kuiico)Ku 

whereas Fi captures the right-hand side of (10a) and (10b), and F2 comprises the algebraic 

restrictions defined by (10c) and (lOd). The index of this DAE is addressed in Section 4 

below. 

4 Index characterization of hybrid models of non-passive circuits 

For the reasons detailed in the Introduction it is important to characterize the index of 

differential-algebraic models of electrical and electronic circuits. In this Section we address 

the index of the hybrid model (10) without passivity restrictions, extending the results of 

[35, 36, 67], which only hold for passive problems. We will provide a description of the 

different index conditions in terms of the digraph topology and, specifically, in terms of the 

forests of certain digraph minors; these conditions will turn out to be independent of the 

normal tree chosen in the formulation of the hybrid model. Our index analysis will also be 

the key for the characterization of the set of non-degenerate points (cf. subsection 6.2). 

Our results extend the approach introduced in [22] for nodal models (previous results re­

garding nodal analysis of passive circuits were obtained in [23, 68]); note that this extension 

is highly non-trivial for several reasons. Indeed, in the present framework we accommodate 



both voltage-controlled and current-controlled resistors (in contrast to [22], which only han­

dles voltage-controlled resistors) and also topologically degenerate configurations (VC-loops 

and IL-cutsets, which are precluded in [22]). Additionally, from a mathematical point of 

view, the form of the matrices J and J\ arising in the proof of Theorem 2 below, as well as 

the (say) non-symmetric form of the factorization DEF of J\, makes the analysis substan­

tially more difficult than the one in [22]. These difficulties may be understood as a result of 

the use of the matrices B and Q (vs. the incidence matrix A in nodal models), which on the 

other hand make it possible to characterize models with degenerate configurations, beyond 

the scope of [22]. 

It is also worth indicating that Example 3 in Section 6 suggests that our index charac­

terization can be extended to problems with controlled sources and multiports; this way, 

the scope of our framework potentially includes circuits with transistors, amplifiers, etc. A 

general analysis in this context is in the scope of future research. 

4.1 The index of a D A E 

Different index notions have arisen in DAE theory in the last decades. These include the 

differentiation, geometric, perturbation, strangeness and tractability indices; cf. [8, 29, 40, 

39, 54, 59]. All these concepts generalize the notion of the nilpotency index of a matrix 

pencil, and support different approaches to the analysis and the numerical simulation of 

DAEs. Moreover, at least for so-called quasilinear DAEs (which include those of the form 

(11) as a particular case), these notions are invariant with respect to contact equivalence (cf. 

Theorem 3.3 in [59]). This implies that a diffeomorphic change of coordinates does not affect 

the index and, in this sense, makes this notion independent of the problem description. 

In the settings which arise in this paper (index zero and index one systems of the form 

(11)), the different index notions amount to the same conditions. For the sake of complete­

ness, we will present below the main ideas supporting the differentiation index concept [8], 

which is possibly the most widely used in DAE theory. Note also that in the index zero and 

index one cases considered in this paper, there is no explicit dependence of the solutions 

on the derivatives of the input (in non-autonomous problems), contrary to what happens in 

higher index problems. 

The DAE (11) is said to be index zero if neither the algebraic variables y nor the explicit 

restrictions ( l ib ) are present, and the matrix M{x) in (11a) is non-singular. In this context, 

the problem can be obviously recast as the explicit ODE x' = (M(x))~1Fi(x). Provided 

that there is an explicit restriction ( l ib ) and that M(x) in (11a) is non-singular, the DAE 

(11) is said to be index one if the matrix of partial derivatives F2y(x, y) is invertible. This 

can be understood in a global sense, or locally around a given (x*,y*) satisfying ( l i b ) . 

Differentiation of ( l ib ) readily gives an underlying ODE 

x' = {M{x)YlFl{x)y) (12a) 

y' = -(F2y)-\x,y)F2x(x,y)(M(x))-1F1(x,y), (12b) 

for which F2 = 0 is an invariant comprising the solutions of the DAE. The fact that one 



differentiation step is enough to reach an underlying explicit ODE explains the meaning of 

the "differentiation index one" expression. 

4.2 A graph-theoretic property involving normal trees 

Consider a digraph Q with p different types of branches. For i = 1 , . . . ,p we will denote by 

Qi the digraph minor obtained after short-circuiting (contracting) all branches of types j < i 

and open-circuiting (removing) all branches of types j > i. 

Proposi t ion 1. With the notation of (2), (Kü I) and (I — K?) are reduced loop/cutset 

matrices of the minor Gi-

Proof. Let us first note that open-circuiting branches of types j > i does not affect the 

fundamental loops defined by the links of type i, since they involve branches of types j < i. 

Additionally, short-circuiting branches of types j < i transforms the fundamental loops 

defined by the links of type i into loops of the minor Gi- This means that all the rows of 

(Ku I) correspond to (linearly independent) loops of Gi-

Analogously, short-circuiting branches of types j < i is irrelevant with respect to the 

cutsets defined by the twigs of type i, because these cutsets only include branches of types 

j > i. And, in turn, open-circuiting branches of types j > i transforms the original cutsets 

defined by twigs of type i into cutsets of Gi- Therefore, all the rows of (/ — K?) describe 

(linearly independent) cutsets of Gi-

Altogether, the number of loops and cutsets specified by the rows of {Ka I) and (/ —K?), 

respectively, equals the total number of branches of Gi- Hence, the ranks of the loop and 

cutset matrices of Gi cannot exceed those of {Ka I) and (/ —K?). This shows that these 

are actually reduced loop and cutset matrices of Gi and the proof is complete. • 

4.3 On the resistor-acyclic condit ion 

According to the discussion in subsection 4.1, for the hybrid model (10) to be index zero 

(that is, for it to amount to an explicit ODE without the need for any differentiations), an 

obvious requirement is the absence of the algebraic restrictions (10c)-(10d). According to the 

derivation of the model presented above, this will happen if all voltage-controlled resistors 

are located in the cotree and every current-controlled one is in the tree. Recall that the 

construction of the hybrid model is based on choosing a tree with as many twig voltage-

controlled resistors as possible (having previously maximized the number of twig capacitors) 

and as many link current-controlled resistors as possible (after having maximized the number 

of link inductors). This means that the algebraic restrictions are absent if and only if there 

is no chance to have voltage-controlled resistors in the tree or current-controlled ones in the 

cotree. 

The situation described above is characterized in [36, 67] by means of the so-called 

resistor-acyclic condition, according to which every voltage-controlled resistor defines a loop 

together with some capacitors, and every current-controlled resistor defines a cutset together 

with some inductors. The equivalence between this condition and the requirement explained 



above is due to the fact that capacitors and inductors have a higher priority than resistors 

as twig and links, respectively: the resistor-acyclic condition precludes choosing voltage-

controlled resistors as twigs and current-controlled resistors as links. 

We present in Proposition 2 below an alternative formulation of this condition. Within 

this statement, by a GRL-cutset we mean a cutset defined by voltage-controlled resistors 

and/or current-controlled ones and/or inductors (GR-, GL-, RL-, G-, R- and L-cutsets being 

particular instances; with the same criterion, R- and L-cutsets are particular instances of an 

RL-cutset, etc.). Analogously, a CGR-loop is a loop defined by capacitors and/or voltage-

controlled resistors and/or current-controlled ones. 

Proposi t ion 2. A circuit composed of capacitors, voltage- and current-controlled resistors 

and inductors satisfies the resistor-acyclic condition if and only if the circuit displays neither 

GRL-cutsets (except for RL-cutsets) nor CGR-loops (except for CG-loops). 

Proof. The claim is based on the colored branch theorem [69] (which is actually a corollary 

of a more general result proved by Minty: cf. Theorem 3.1 in [49]), according to which, in a 

three-color graph with just one blue branch, this branch either forms a loop exclusively with 

green branches or a cutset exclusively with red branches, but not both. 

According to this result, the requirement that every voltage-controlled resistor defines a 

loop together with some capacitors is equivalent to the absence of cutsets defined by (one 

or more) voltage-controlled resistors together with (possibly) some current-controlled ones 

and (possibly) some inductors; indeed, fix a voltage-controlled resistor and paint it in blue, 

paint the capacitors in green and the remaining voltage-controlled resistors as well as the 

current-controlled ones and the inductors in red; this voltage-controlled resistor cannot enter 

any GRL-cutset, and this reasoning applies to each voltage-controlled resistor. Analogously 

every current-controlled resistor defining a cutset jointly with some inductors precludes the 

existence of loops defined by (one or more) current-controlled resistors together with (possi­

bly) some capacitors and (possibly) some voltage-controlled resistors. • 

4.4 Index zero condit ions 

The remarks in subsection 4.3 make the analysis of index zero models (under the resistor-

acyclic condition) amount to the study of the non-singularity of the leading matrix 

M=(Mi 0 \ = ÍCtr(vCtr) + K^CU-KnVcjKn 0 \ 

In the absence of reactive coupling (cf. the Remark at the end of this subsection), the non-

singularity of Mi and M2 can be addressed in a non-passive context using the digraph minors 

Gi arising in Proposition 1. Specifically, Qc will be the minor obtained after open-circuiting 

all elements except for capacitors, and Gi will stand for the minor resulting from short-

circuiting all devices except for inductors. These two minors will be the key objects arising 

in Theorem 1 below. Additionally, in the proof of this result we will denote by T\ and r4 

the number of tree capacitors and cotree inductors in a normal tree (recall that the original 

circuit is assumed to be connected). 



Theorem 1. Assume that a given circuit does not display capacitive or inductive coupling. 
Then the hybrid model (10) is index zero if and only if the following requirements hold. 

• The resistor-acyclic condition is met. 

• The sum of capacitance products in the forests of Qc does not vanish. 

• The sum of inductance products in the coforests of Gi does not vanish. 

Proof. The need for the resistor-acyclic condition is clear from the remarks discussed in 
subsection 4.3 (cf. [36, 67]). 

The matrix Mi arising above can be factorized as 

*=('-*••) ( í i) U ) • 
Denote 

According to Proposition 1, D is a cutset matrix for the minor Qc defined above. By means 
of the Cauchy-Binet formula [32] we may write 

det Mi = J2 de t DUJ'a de t E<X'P de t F / ? ' W > 
a,/3 

where the notation Dw'a, Ea^, F13'^ is used to mean certain submatrices of D, E, F: specif­
ically, a and (3 are index sets which select T\ columns and rows of D and F, respectively; 
UJ = { 1 , . . . , ri} specifies all rows/columns of these matrices, and E"'13 is the submatrix of E 
defined by the rows indexed by a and the columns indexed by (3. 

Since E is diagonal (because of the absence of capacitive coupling effects), we have 
detE"'13 ^ 0 only if a = (3. We also have D = FT, and then det D"'" = detF"^. Addi­
tionally, det D^'" is known to be non-vanishing if and only if the set of indices a specifies a 
forest, and in this case detD^'" = ±1 (cf. Lemma 1). 

In light of these remarks, we get 

det Mi = J2 det DUJ'a det E"'a det F<X,UJ = Yl (d e t j D"' a) 2 I I C* = Yl I I C*> (13) 
a£Tc a£Tc ida a£Tc ida 

where Tc stands for the family of index sets that specify a forest of Qc, and C¿ is the z-th 
capacitance. From (13) it is clear that Mi is non-singular if and only if the sum of capacitance 
products in the forests of Qc does not vanish. 

The dual case arises in the matrix 



The factorization reads 

D -{K- ^E={Lo L) • F - (f) • 
and now D = [K^ / ) is a loop matrix for the minor Gi (cf. Proposition 1). Proceeding as 

above we may derive 

det M2 = Y^ det DUJ'a det E<x'a det Fa'u = J ] ( d e t DUJ'a^ I I L i ' 

where a now stands for sets of r4 indices; L¿ is the z-th inductance. Additionally, det Du'a 

does not vanish if and only if a specifies a coforest, and in this case detD^'" = ± 1 since D 

is a fundamental matrix (see Lemma 1). Hence 

det M2 = J2]jLl, 

where C¡ denotes the family of indices specifying coforests of Gi- Again, this makes it clear 

that M2 is non-singular if and only if the sum of inductance products in the coforests of Gi 

does not vanish. This completes the proof of Theorem 1. • 

Remark. In particular, if the capacitors and inductors are strictly locally passive, then the 

incremental capacitances and inductances are positive and the sums arising above are always 

positive (and hence non-zero). In this sense, Theorem 1 above is an extension of the results 

in [35, 36, 67] to the non-passive setting, holding for problems without reactive coupling. 

4.5 Index one condit ions 

The discussion of index one conditions for the hybrid model (10) without passivity require­

ments will be based on the digraph minor Gr, obtained after short-circuiting capacitors and 

open-circuiting inductors. We will assume the leading matrix of the hybrid equations to be 

non-singular via the conditions arising in Theorem 1. 

Theorem 2. Assume that a given uncoupled circuit does not meet the resistor-acyclic con­

dition, and that the sums of capacitance and inductance products arising in Theorem 1 do 

not vanish. 

Then the hybrid model (10) is index one if and only if the sum of products of the con­

ductances of voltage- controlled twig resistors and the resistances of current-controlled link 

resistors, extended over the forests ofGr, does not vanish. 

Proof. In this working setting, the index one condition relies on the non-singularity of the 

matrix of partial derivatives of the algebraic restrictions (10c) and (lOd) with respect to the 

algebraic variables vgtr and iTco. This matrix is 

Gtr + K^2GcoK 22 -KÍ2 \ (-IA\ 
K32 Rco + K33RtrK¡J- [ ) J = 



The key idea to tackle the non-singularity of this matrix is to look at it as the Schur com­
plement [32, 59] of the middle identity block in 

•h 
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0 

K32 

0 
/ 
0 

K^Rtr 

~K22GC 

0 

/ 

0 
0 

and to factorize J\ as the product DEF with 

E 
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0 
0 
0 
0 
0 
0 
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/ / 
0 
0 
0 

0 
/ 
0 
0 

0 
0 
0 
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0 
/ 
0 
0 
0 
0 
0 
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Note that the submatrices 
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o 
0 

Ga 

0 

0 
0 
0 
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0 0 
0 0 
0 0 
/ 0 
0 / 
0 0 
0 0 
0 0 

-Kg 
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0 

0 

0 

0 

Rtr 

0 

0 

-K¡2 

-Kl 
0 

0 

0 
0 
0 
0 
0 
0 
/ 
0 

0 

0 

K22 

K32 

\ 

0 
0 
0 

0 
0 
/ 
0 

0 
0 

1 ) 

0 
0 
0 
0 
0 
0 
0 

Rco J 

F 

( I 0 0 0 \ 
0 / 0 0 
0 0 / 0 
0 0 0 / 
/ 0 0 0 
0 / 0 0 
0 0 / 0 

V o o o / / 

D9 = 
K-

22 

32 

0 I 0 

0 / 

of D are, by construction, reduced cutset and loop matrices of the minor Qr. 
The properties enumerated below, together with the diagonal form of E, will make it 

feasible to simplify the Cauchy-Binet expansion of the factorization J\ = DEF. 

1. Only sets of columns corresponding to forests (resp. coforests) of Qr yield non-vanishing 
determinants in the corresponding submatrices of D\ (resp. of D2). 

2. Moreover, the structure of F is easily checked to imply that only when the forest arising 
from D\ and the coforest associated with D2 are complementary to each other, the corre­
sponding determinant of Fa^ (cf. (15) below) does not vanish, since otherwise this submatrix 
would have (at least) two identical rows. 

Items 1 and 2 above make it possible to write the Cauchy-Binet expansion as 

det J\ E 
a€Tar 

det D"'a det Ea'a det Fa'' (15) 

where Tgr is the family of sets of indices which can be written as a = «i U «2, the former 
corresponding to a forest of Qr and the latter specifying the associated coforest. Notice that 
each forest (resp. coforest) of Qr yields a non-singular submatrix of D\ (resp. of D2). 



3. In the context defined by items 1 and 2 above, the identity 

det D"'* det Fa'" = 1 

holds, as detailed in what follows. Consider the product 

/ / 0 
0 / 0 

(16) 

-Kl KTi2\ 

H = DF = 

and denote, for notational simplicity, 

K 

K22 0 

K?,2 Ka 

I 
0 

0 
/ 

By means of the identity 

/ KT 

0 / 
/ 

K 

K22 0 
^ 3 2 ^ 3 3 

-KT 

I 
I + KTK 0 

K I 

it is easy to check that det H = det(J + KTK). The latter matrix equals the product 
(/ — KT)(I — KT)T and, since (/ — KT) is a fundamental cutset matrix for the minor 
Gr, according to Lemma 2 this determinant, and hence det H, equals the total number of 
(spanning) forests in this minor. 

On the other hand, reasoning as in item 2, the Cauchy-Binet formula applied to the 
product H = DF yields 

det H = ^2 det IT'a det F0'", (17) 

with index sets a G Tgr as above. Both detD^'" and det Fa'w are ±1 , and for the sum in 
(17) to equal the total number of forests, it must be det D^'" det Fa^ = 1 for all the index 
sets a which make both determinants non-null. This way the identity (16) is proved. 

Because of the properties 1, 2 and 3 above, the Cauchy-Binet expansion of J\ = DEF 
amounts to a sum of products of certain diagonal entries of E, namely, the ones signaled by 
o¡i from the first four blocks Gtr, I, Gco, I, together with those specified by o¡2 from the last 
four blocks / , Rtr, I, Rco- Since c¿\ and o¡2 must correspond to a forest and its coforest, the 
non-vanishing terms in the sum are therefore defined by the products of the conductances of 
voltage-controlled resistors in forests of Qr and the resistances of current-controlled resistors 
in the corresponding coforests. The proof of Theorem 2 is then complete. • 

Again, the index one results of [35, 36, 67] for passive circuits may be derived in uncoupled 
cases from Theorem 2 above, since strictly locally passive resistors have positive conductances 
and resistances and therefore all products arising in Theorem 2 are positive. 

Note that points in the semistate space where some of the sum of products arising in 
Theorems 1 and 2 vanish lead to singularities of the model, possibly yielding impasse phe­
nomena [15, 54, 59]; cf. subsections 6.2 and 6.3 in this regard. The detailed analysis of such 
singularities in terms of the electrical features of the circuit is an open problem. 



4.6 Sources 

Independent voltage and current sources can be added without difficulties in well-posed 

configurations (i.e. not including loops of voltage sources or cutsets of current sources). In 

this context, normal trees include all voltage sources and no current sources, the hierarchy 

of other devices remaining the same. The minor Qc must in this case be replaced by the one 

obtained after short-circuiting voltage sources and open-circuiting all other devices (except 

for capacitors), and analogously the minor Q¡ now results from short-circuiting all elements 

except for inductors and current sources, and open-circuiting current sources. Similarly, the 

minor Qr must now be constructed by short-circuiting voltage sources and capacitors, and 

open-circuiting current sources and inductors. 

The resistor-acyclic condition must be restated as to require that every voltage-controlled 

resistor defines a loop together with some capacitors and/or voltage sources, and every 

current-controlled resistor defines a cutset together with some inductors and/or current 

sources. The statement in Proposition 2 must be reformulated as the absence of GRLI-cutsets 

(except for RLI-cutsets) and VCGR-loops (except for VCG-loops). The remaining conditions 

arising in the index analysis remain the same in problems with independent sources. Note 

that , in the formulation of the circuit equations, the derivatives of the excitation terms 

coming from voltage sources within VC-loops and current sources within IL-cutsets will 

appear explicitly in the model (cf. Section 6). 

5 Circuits with memristors 

5.1 The memristor 

A charge-controlled memristor [14] is a nonlinear device governed by a flux-charge charac­

teristic of the form 

<p = <l>(q). (18) 

By means of the electromagnetic relations <p'(t) = v(t), q'{t) = i(t), from (18) we get the 

voltage-current characteristic 

v = M(q)i 

where 

M(q) = <f>'{q) 

is the so-called incremental memristance. 

The device behaves as a resistor in which the resistance depends on q{t) = J_ i(r)dr, 

keeping track of the device history. For this reason Chua called this circuit element a 

memory-resistor or memristor. As indicated in Section 1, the memristor and related devices 

have been the object of much recent attention: see [1, 18, 19, 33, 34, 48, 53, 60, 61, 66] and 

references therein. 

The dual case is defined by a flux-controlled memristor, which has a characteristic of the 

form 

q = a(tp), 



with incremental memductance 

W(ip) = a'(ip). 

A memristor is strictly locally passive if M(q) > 0 or W(<p) > 0 for all q or ip, respectively. 

As in Section 4, our goal in the analysis carried out below is to get an index charac­

terization holding without the need to require memristors (or other circuit elements) to be 

passive. This way, the results here obtained will be of interest in the analysis of nonlinear 

oscillators and chaotic circuits including active memristors [5, 33, 50]. 

5.2 Hybrid model 

The derivation of the hybrid equations for memristive circuits parallelizes the one detailed in 

Section 3 for classical circuits (i.e. circuits without memristors), and therefore most details 

will be omitted. Again, in a first step we avoid including sources in order to simplify the 

notation, especially concerning the matrices arising below. We will use the subscripts m and 

w to refer to charge-controlled and flux-controlled memristors, respectively. 

A normal tree will now be defined by a hierarchy of circuit elements in which capacitors 

(type 1 devices) are the ones preferred as twigs, and then voltage-controlled resistors and 

flux-controlled memristors (type 2), current-controlled resistors and charge-controlled mem­

ristors (type 3), and inductors (type 4). We will simplify a bit the form of the equations 

by priorizing (additionally) voltage-controlled resistors over flux-controlled memristors, and 

current-controlled resistors over charge-controlled memristors, although the analysis could 

also be performed without these distinctions. In this direction, reverting the priority be­

tween voltage-controlled resistors and flux-controlled memristors, and/or the one between 

current-controlled resistors and charge-controlled memristors, would lead to a model with 

similar complexity. 

With the device hierarchy specified above, the matrix K takes the form 

¡Ku 0 0 0 0 0 \ 

K2l K22 0 0 0 0 

K3l K32 K33 0 0 0 

Ku Ki2 Ki3 Ku 0 0 ' 

K51 K52 K53 K54 K55 0 

\K6i K62 K63 K64 K65 KmJ 

The hybrid model is defined by the differential equations for the reactive elements, which 

now can be checked to read as 

[Ctr(vctr) + K^Ccoi-Kuv^Kulv'^ = K^hco{-K2lvCtr - K22vgtr) + 

+K31W(pWco)(-K31vCtr - K32vgtr - K33vwtr) + K^ir^, + K^imco + K^ilco 

[LcoiiiJ + KmLtr(K^iiro)Kj6]i'lco = -K6lvCtr - K62vgtr - K63vWtr-

-KMftr(Kj4irco + KlAimco + KT^ilco) - K65Mtr(qmtr)(K^5imco + K^ilco) 

(19a) 

(19b) 



and the ones for the memristive devices 

f'wtr = 

<f'wco = 

H-mtr 

" i B a , 

- VWtr 

= -K3ivctr - K32v, 

= ^^nico + -f^65^co 

~~ ^rrico > 

(20a) 

9tr ~K33vWtr (20b) 

(20c) 

(20d) 

together with the algebraic restrictions, which take the form 

htr(vgtr) = K^2hco(-K21vCtr - K22vgtr) + 

+K3
r
2Wco(<fWco)(-K31vCtr - K32vgtr - K33vwtr) + Kj2irco + Kj2imco + K%2ilco 

[Wtr(<Pwtr) + K^Wco(vWco)K33]vWtr = 

(21a) 

(21b) 
= K33Wco(^Wco)(-K31vCtr - K32vgtr) + K43irco + K53imco + K63ilco 

fco(irco) = ~K41vCtr - K42vgtr - K43vwtr - Kuftr(Kj4irro + K^imro + K^ilro) (21c) 

[Mco{qmro) + K55Mtr(qmtr)Kj5]imco = -K5ivCtr - K52vgtr - K53vWtr-

-KMftr(KjAirco + Kjjmco + ^ ¿ i c o ) - K55Mtr(qmtr)Kj5ilco. 
(21d) 

The differential variables are defined by the vector (vCtr,iico,LpWtr,LpWco,qmtr,qmco) and the 

algebraic ones by (vgtr,vWtr,irco,imco). 

5.3 The index of memrist ive circuits 

The (mem)resistor-acycl ic condit ion. The resistor-acyclic condition must now be re­

stated as follows: every voltage-controlled resistor, but also every flux-controlled memristor, 

defines a loop together with some capacitors, and every current-controlled resistor or charge-

controlled memristor defines a cutset together with some inductors. This rules out choosing 

voltage-controlled resistors or flux-controlled memristors as twigs, and current-controlled re­

sistors or charge-controlled memristors as links. This is a straightforward extension of the 

condition arising in the classical setting; we give it a different name only for the sake of 

terminological consistency. We leave it to the reader to formulate the analog of Proposition 

2 in the memristive context. 

The characterization of index zero problems follows exactly Theorem 1, now in terms 

of the (mem)resistor-acyclic condition and the digraph minors Qc (which is now defined by 

open-circuiting all resistors, memristors and inductors) and Gi (now being defined by short-

circuiting all capacitors, resistors and memristors). The attention will be therefore focused 

on the index one context: we provide below a characterization of index one hybrid models 

in the memristive context, in terms of the digraph minor obtained after short-circuiting 

capacitors and open-circuiting inductors (to be denoted by Qrm\ note that this minor now 

includes resistors and memristors). 

Theorem 3. Assume that a given uncoupled circuit does not meet the (memjresistor-acyclic 

condition and that the sums of capacitance and inductance products arising in Theorem 1 

(now being computed over Qc and Gi as defined above) do not vanish. 



Then the hybrid model defined by the equations (19), (20) and (21) is index one if and only 
if the sum of products of the conductances of voltage-controlled twig resistors, the memduc-
tances of flux-controlled twig memristors, the memristances of charge-controlled link mem-
ristors and the resistances of current-controlled link resistors, extended over the forests of 
Grm, does not vanish. 

Proof. Recall that the model defined by (19), (20) and (21) has vCtr, i¡co, <*pWtr, <-pWco, q_mtr 

and qmco as differential variables, and vgtr, vWtr, iTco and imco as algebraic ones. The index 
one condition now relies on the non-singularity of the matrix of partial derivatives of the 
algebraic restrictions (21) with respect to vgtr, vWtr, iTco and imco, namely 

(Gtr + K2
T

2GcoK22 + K%2WcoK32 K^2WcoK33 -Kj2 -K?2 

Ki3WcoK32 Wtr + Ki3WcoK33 -Kj3 -K£3 

K42 K43 Rco + KiiRtrK44 KAARITK^A 

V ^52 #53 KZiRtrKjA Mco + K55MtrK^5 + K54RtrK^ 

Let us denote 

v , Gtr 0 \ v _ f Gco 0 \ _( Rtr 0 \ ( Rco 0 

and 

0 Wtr V 0 Wro \ 0 Mtr r V 0 M, 

k = ( K22 0 \ ¿c={ K42 K43\ - = f KM 0 
V K32 K33 J ' V ^ 5 2 K53 J ' V ^54 K55 

Then the matrix above reads as 

V t r + KTYcoK 
K ZCl 

and this shows that it has exactly the structure depicted in (14). Therefore the proof of 

Theorem 2 applies here by grouping together voltage-controlled resistors and flux-controlled 

memristors, on the one hand, and current-controlled resistors and charge-controlled mem­

ristors, on the other. • 

Sources. Without the need for additional details, it should be clear that independent voltage 

and current sources can be included in the analysis as long as loops of voltage sources and 

cutsets of current sources are avoided. The capacitive minor is again obtained after short-

circuiting voltage sources and open-circuiting all other devices (except for capacitors), and 

the inductive minor results from short-circuiting all elements except for inductors and current 

sources, and open-circuiting the latter. The definition of the resistive-memristive minor and 

the restatement of the (mem)resistor-acyclic condition also proceed as in the classical setting. 

6 Examples 

6.1 Example 1 

We begin with a simple example aimed at illustrating the notions and ideas introduced above 
and, specially, at showing how to compute the index conditions in terms of the (co)forests 



of the different digraph minors. The example is defined by the circuit depicted in Figure 1. 

Figure 1: Memristive circuit. 

The circuit includes a voltage source Vs, three linear capacitors (with capacitances Co, C\, 

C2), a linear inductor with inductance L, a linear current-controlled resistor with resistance 

R, and four nonlinear devices: a diode (which will be treated as a nonlinear voltage-controlled 

resistor governed by a relation of the form ig = h(vg), with incremental conductance G = 

h'), a charge-controlled memristor with memristance M, a flux-controlled memristor with 

memductance W, and a Josephson junction (labelled as J ) . The latter (cf. [17]) can be seen 

as a nonlinear inductor governed by a current-flux relation of the form ij = I0 sin(fc0</?j) for 

certain constants IQ, &o; we will denote its incremental inductance by Lj. This inductance 

becomes negative at certain operating regions; the same may happen with the incremental 

conductance G of the diode if it displays tunneling effects. The non-passive setting considered 

in previous Sections is therefore of interest in the index analysis of hybrid models for this 

circuit. Note also that the VC-loop defined by the voltage source together with the capacitors 

G\ and C2 would confer the Modified Nodal Analysis (MNA) model for this circuit an index 

two structure [23, 68], at least under passivity requirements. 

We will formulate the hybrid equations in terms of the normal tree depicted in Figure 2. 

It is worth remarking that the circuit only has another normal tree, obtained after replacing 

the capacitor C\ by C2. Certainly, the index conditions arising in the analysis will not depend 

on the choice of one or another. 

VD 

C, G 

Cr 

R 
-AM/V 

w 
ñrj-

Figure 2: Normal tree. 

With this choice, and letting VQ and v\ stand for the voltage drops in the capacitors Co 



and C\, the hybrid equations can be checked to read as 

CWo = 

(C1 + C2M = 

Li[ = 

Lj(ij)i'j = 

f'w = 

y?n _ 

0 = 

0 = 

0 = 

— Im 1>l lij 

= C2v'8(t) - im 

= v0 + vw - R(it + ij) 

= v0 + vw- R(it + ij) 

= vw 

~ '•m 

= h(Vg) + Ím 

= ii + ij + W{tpw)vw 

= M(qm)im + vs(t)-vo-vi-Vg. 

(22a) 

(22b) 

(22c) 

(22d) 

(22e) 

(22f) 

(22g) 

(22h) 

(22i) 

This system is formulated in terms of the twig capacitor voltages v0, V\, the link inductor 

currents i¡, ij, the flux and the charge of flux-controlled and charge-controlled memristors, 

respectively (namely, ipw and qm), the voltage of voltage-controlled twig resistors and flux-

controlled twig memristors (in this and vw) and the current of current-controlled 

link resistors and charge-controlled link memristors (which in this case amount to im). 

In light of the model (22), it is easy to check that the leading matrix (cf. (22a)-(22f)) is 

non-singular if and only if 

Co + 0 ^ d + C2, L ¿ 0 ^ Lj, 

and that the index one condition arising from (22g)-(22i) is 

W(GM + 1 ) ^ 0 . 

(23) 

(24) 

Our goal is to show that the conditions (23)-(24) can be obtained in graph-theoretic 

terms, just by examining the (mem)resistor-acyclic condition and the trees of the digraphs 

Gc, Gi, Grm introduced in Section 5. A simple check shows that the (mem)resistor-acyclic 

condition does not hold; actually, only R satisfies the requirement arising in this condition, 

because of the cutset defined by this resistor together with L and J . 

Figure 3: The Gc minor. 

The minor Gc for this example is depicted in Figure 3. From this Figure it is obvious 

that Gc has two forests, defined by C0, C\ and by C0, C2, respectively. The corresponding 
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Figure 4: The Qi minor. 

sum of products is therefore C0Ci + CoC2 = CQ(C\ + C2), and this explains the conditions 

C o ^ 0 ^ C 1 + C 2 i n ( 2 3 ) . 

Figure 4 displays the Gi minor. Now there is a unique forest (which is a singleton), and 

therefore a unique coforest comprising the inductor and the Josephson junction. The product 

of inductances in this unique coforest is LLj and this is responsible for the non-vanishing 

requirement on both inductances in (23). 

G 

M 

53 

R 

w 53 
Figure 5: The Qrm minor. 

Finally, the Qrm minor is displayed in Figure 5. This connected minor has two forests 

(trees), defined by G, R, W and by M, R, W. Now the products involve the conductances 

of voltage-controlled twig resistors, the memductances of flux-controlled twig memristors, the 

memristances of charge-controlled link memristors and the resistances of current-controlled 

link resistors; this means that the first tree yields the product GWM, whereas only W arises 

in the second. This leads to the requirement W(GM + 1) ^ 0 in (24). 

Certainly, in this example the derivation of the model (22) and the computations leading 

to (23)-(24) are easy to perform by hand, but the scope of our results also includes in 

practice complex circuits in which such computations are not feasible; note additionally that 

the approach applies even without computing the model. This way, the framework here 

presented not only displays a theoretical interest but is also useful for practical purposes in 

actual circuit analysis, e.g. for monitoring index conditions in circuit simulation. 

6.2 Non-degeneracy 

It is important to understand the meaning of the conditions (23)-(24) within Example 1. 

These conditions restrict the values of the variables ij, Lpw, vg and qm for which the model 

(22) is non-degenerate; singularities and impasse phenomena would arise at values of these 



variables making the aforementioned conditions fail. Should C0, C\, C2 and/or L be nonlin­

ear, the same applies to the variables v0, V\ and/or i¡. 

This can be addressed in greater generality, in terms of the DAE model (10). Denote 
x = (vctr )hco) i V = (vgtr^rco)- A set of values for (x,y) is said to be non-degenerate if a unique 

solution of (10) emanates from it. Prom an analytical point of view, the importance of the 

index one notion relies on the fact that it characterizes the set of non-degenerate points. 

The non-degeneracy condition fails at so-called singular points, where impasse phenomena 

are displayed [15, 16]. Specifically, (x*,y*) is said to be a forward impasse point if there 

exists a ¿ > 0 and two distinct solutions in C1((—5, 0), Q) n C°((—8,0], Q) with initial point 

x(0) = x*, y(0) = y*, whose derivatives blow up at t = 0. A backward impasse point is 

defined analogously, just requiring the solutions to be defined in ^ ( ( O , 5),Q)C\ C°([0, ó), Q). 

Singularities may also arise in an index zero setting, and analogous remarks apply to the 

model defined by (19), (20) and (21) for circuits with memristors. 

The non-degeneracy notion, together with that of an impasse point, will be illustrated 

by means of the memristor oscillator considered in Example 2 below. 

6.3 Example 2 

Consider the circuit displayed in Figure 6(a), defined by a series connection of a charge-

controlled memristor with memristance M(qm), a linear inductor and a linear capacitor. 

Memristor oscillators of this type have been considered in [33]. 

M 

L 

a c 

L 

W c 

Figure 6: (a) MLC oscillator, (b) Replacing M by a flux-controlled memristor. 

Because of the cutset defined by the charge-controlled memristor and the inductor, the 

(mem)resistor-acyclic condition holds. For non-vanishing C, L, and any value of M, the 

circuit is non-degenerate: this means that there is no restriction on the values of qm, ii and 

vc for which a unique solution is well-defined. In particular, no concern arises at the values 

of qm for which M(qm) may vanish. 

However, qualitative changes may be displayed at points where M(qm) vanishes. Note 

that the circuit is governed by the hybrid equations 

q'm = it (25a) 

Li\ = -M{qm)it-vc (25b) 

Cv'c = ih (25c) 

In particular, it is worth noticing the invariant qm — Cvc; indeed, the identity q'm — Cv'c = 

it — it = 0 implies that qm — Cvc remains constant along trajectories. We may then consider 



/•í = Qm — Cvc a parameter and rewrite (25) just in terms of qm and i¡. Fixing L = C = 1 for 
the sake of simplicity, we arrive at 

H 
-M{qm)ii - qm + ¡i. 

(26a) 

(26b) 

Equilibria of (26) are given by %i = 0, 
equilibrium are easily checked to be 

Qm = H, and the eigenvalues of the linearization at 

A = 
-M(fji) ± V ^ ) 2 " 4 

If ¡i undergoes a value where the memristance M vanishes, eventually becoming negative 
(this modelling a locally active device), the real part of the eigenvalues become positive and 
the equilibrium point experiences a stability change. In particular, when a supercritical Hopf 
bifurcation occurs [52], this stability loss conveys the birth of a nonlinear limit cycle, making 
the circuit oscillate. This is the case e.g. if we take M(qm) = qm — q^: for small negative 
values of fi, the memristance M(fi) becomes negative and an attracting periodic trajectory 
shows up. In Figure 7 (qm and i¡ in abscissae and ordinates, respectively) we plot such 
periodic solutions for the parameter values ¡i = —0.1 and ¡i = —0.5; note that in both cases 
the periodic solution encircles the equilibrium located at qm = fi, i¡ = 0. 
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Figure 7: Nonlinear oscillations: (a) ¡i = —0.1 (b) ¡i = —0.5. 

Things are different if the charge-controlled memristor is replaced by a flux-controlled 
one, as depicted in Figure 6(b). Now the (mem)resistor-acyclic condition does not hold and 
the hybrid equations do not amount to an explicit ODE such as (25). Instead, the model 
now reads as the semiexplicit DAE 

(27a) 

(27b) 

(27c) 

(27d) 

This DAE is easily seen to be index one if and only if W(<pw) does not vanish. Values of 
ipw for which W{ipw) = 0 are degenerate and lead to singularities. Computer simulations 

Vw = 

Li[ = 

Cv'c 

0 = 

= vw 

= -vc - vw 

= k 
= k - W(ipw)v 



actually show, with W(<pw) = Lpw, that the hyperplane ipw = 0 is composed of impasse 
points; in particular, a pair of trajectories collapse with infinite speed at forward impasse 
points located on the region i¡ < 0. 

Note, incidentally, that the Qrm minor amounts in this circuit to a single twig defined 
by the memristor and, in a flux-controlled setting, it must be W / 0 for the problem to 
be non-degenerate, according to Theorem 3. By contrast, Theorem 3 imposes no restriction 
on the value of M for the circuit in Figure 6(a) because in that case the memristor is a 
charge-controlled one. As detailed above, if M = 0 then the dynamics undergoes a Hopf 
bifurcation, but the circuit keeps on being non-degenerate (and, accordingly, no impasse 
phenomenon is displayed) even if M vanishes. 

6.4 Example 3 

The results of Sections 4 and 5 are based on the assumption that the circuit elements are 
uncoupled one-ports. In the presence of coupling effects, controlled sources and/or multiports 
the analysis is more cumbersome; some results based on so-called balanced trees were obtained 
for nodal models of topologically non-degenerate circuits with controlled sources in [62]. We 
discuss below an example involving a bipolar junction transistor, which is usually modelled 
as a three-terminal (or two-port) with controlled sources, in order to motivate further study 
aiming to extend the results based on balanced trees to our present context. 

Consider the common-emitter amplifier shown in Figure 8, where the pnp transistor acts 
as an amplifier for an input voltage Vi, the circuit displaying also a parasitic input resistance 
Ri, a coupling capacitor C, a bias resistor Rb, a load resistor RL and a DC source Vcc. 
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Figure 8: A pnp transistor amplifier. 

In Figure 9 we replace the transistor by the well-known Ebers-Moll model, where 

ÍEB = ¿i ~ <*RÍ2 = IEs(eVEB/vT - 1) - aRIcs(e
VCB/vT - 1) 

%CB = -aFh + i2 = -aFIES(e
VEB/vT - 1) + Ics{eVCB/VT - 1). 

Here IES and Ics are the reverse saturation currents in the emitter and the collector diodes, 
OLF and CXR are the forward and reverse current transfer rations, and vF is the thermal voltage. 

RT 

' vo 

v vcc 



Note that the current sources may also be understood to be nonlinear, voltage-controlled 

ones, the base-emitter and the base-collector sources being controlled by the collector-base 

and the emitter-base voltages, respectively; this point of view will be useful later since it 

provides a (coupled) conductance description of all four branches in the model, namely 

ÍEB = 9I(VEB) ~ 93(VCB) 

icB = -9A(VEB) +92(VC'B), 

with 93(VCB) = aRg2(vcB) and g4(vEB) = aFgi(vEB). 
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Figure 9: Equivalent circuit. 

Omitting some details for the sake of brevity, the hybrid equations can be written for 

this circuit as 

vc = 

0 = 

0 = 

0 = 

0 = 

0 = 

9I(VEB) - 9Z{VCB) 

92{VCB) - 9A{VEB) 

Vi(t) - v c - RiiRi -I 

-*RL 

tÍRL 

VEB 

ÍRb + ÍRi 

-Vcc 

-Vcc 

RbÍRb -

RLÍRL 

VEB 

VVEB VCB-

(28a) 

(28b) 

(28c) 

(28d) 

(28e) 

(28f) 

This model is written in terms of the capacitor voltage vc, the resistors' currents %R^ %Rh and 

ÍRL, and the emitter-base and collector-base voltages VEB, VCB- Some simple computations 

show that the index one condition for the model (28), relying on the non-singularity of the 

matrix of partial derivatives of (28b)-(28f) w.r.t. the algebraic variables VEB, VCB, ÍRH ÍRh 

and ÍRL, reads as 

Rí + Rb + G2RbRh + G2RÍRL + (Gi + G2 — G3 — G¿)RiRb + (G1G2 — G^G^RÍR^RL 7̂  0. (29) 



Notably, this is again a sum of twig conductance and link resistance products. The dif­

ferent terms arising in this sum can be checked to correspond to certain spanning trees of 

the resistive minor depicted in Figure 10, where we label each device with its incremental 

conductance or resistance; note that in the controlled sources, each one of the conductances 

G3 and G4 depend on the voltage drop across the other junction. Specifically, the terms 

arising in (29) correspond to the products of twig conductances and link resistances in the 

spanning trees defined by the pairs Rb-Ri, RÍ-RL, G2-R1, G 2 - i4 , GI-RL, G2-RL, G3-RL, 

G^-RL, G1-G2 and G3-G4, depicted in Figure 11. 

Figure 10: Resistive minor. 
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Figure 11: Balanced trees. 

These trees are actually the balanced ones, in the terminology of [62]. A balanced tree 

is a spanning tree which (a) does not contain simultaneously a controlled source and its 

controlling branch, and (b) is such that the replacement of all controlled sources in the 

tree by their controlling branches still results in a tree. The first requirement rules out the 

pairs G1-G4 and G2-G3, and the second one precludes the pairs G^-Ri and G^-Rb (note that 

neither G1-R4 nor G\-Rb define a tree). One can check that the signature of the trees G3-RL, 

G^-RL and G3-G4 as defined in [62] is —1, and this is responsible for the "—" sign in the 

terms G3RiRb, G^R^Rb and G3G4ii
>

iii
>5-fi>L within (29). 

This example suggests that the results of [62] can be extended to the general context of 

hybrid models of circuits with controlled sources and multiports in the broader framework 

here considered, that is, including (in contrast to [62]) topologically degenerate configurations 

and both current-controlled and voltage-controlled resistors, as well as memristors. A general 

index analysis in this setting is in the scope of future research. 



7 Concluding remarks 

Hybrid circuit models, originally due to Kron [38], have been recently framed in a differential-
algebraic setting [35, 36, 67]. Within a passive context, the DAE index of such models are 
proved in the aforementioned references to be not greater than one. In this paper we have 
extended the index analysis to the non-passive context, providing accurate index conditions 
in terms of the forests of certain digraph minors. The elimination of certain variables in 
the formulation of the model guarantees that also in the non-passive context the index 
is generically not greater than one. This provides a key computational advantage over 
Modified Nodal Analysis (MNA), supporting SPICE and other circuit simulators, for which 
certain circuit configurations are known to lead to index two models, thus requiring a more 
sophisticated numerical treatment. 

The conditions arising in our analysis provide an exact description of the sets of index zero 
and index one points, and lead to an accurate description of the manifold of singularities 
where the index is not defined, yielding degenerate points where impasse phenomena are 
expected. The hybrid models and the index characterization have been extended to the 
context of memristive circuits. In both the classical and the memristive context, the results 
are of interest in the design of nonlinear oscillators and chaotic circuits, which are crucially 
based on the use of active devices. In particular, a memristor oscillator example has been 
used to illustrate different notions and results. 

Our analysis virtually provides a complete index characterization of hybrid models of 
lumped circuits with one-port devices, not displaying controlled sources or coupling effects. 
An example involving a bipolar junction transistor suggests that our results can be extended 
to problems with certain types of controlled sources. Other active devices might lead to 
higher index problems, as it happens in other approaches; this is a topic that requires further 
study. In this direction, a general analysis of circuits with controlled sources and coupling 
effects, possibly including multiport and multiterminal devices, as well as the extension of 
the results to distributed circuits and to systems with other mem-devices, define lines for 
future research. 
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