8,577 research outputs found

    Sliding mode control of quantum systems

    Full text link
    This paper proposes a new robust control method for quantum systems with uncertainties involving sliding mode control (SMC). Sliding mode control is a widely used approach in classical control theory and industrial applications. We show that SMC is also a useful method for robust control of quantum systems. In this paper, we define two specific classes of sliding modes (i.e., eigenstates and state subspaces) and propose two novel methods combining unitary control and periodic projective measurements for the design of quantum sliding mode control systems. Two examples including a two-level system and a three-level system are presented to demonstrate the proposed SMC method. One of main features of the proposed method is that the designed control laws can guarantee desired control performance in the presence of uncertainties in the system Hamiltonian. This sliding mode control approach provides a useful control theoretic tool for robust quantum information processing with uncertainties.Comment: 18 pages, 4 figure

    Sampled-data design for robust control of a single qubit

    Full text link
    This paper presents a sampled-data approach for the robust control of a single qubit (quantum bit). The required robustness is defined using a sliding mode domain and the control law is designed offline and then utilized online with a single qubit having bounded uncertainties. Two classes of uncertainties are considered involving the system Hamiltonian and the coupling strength of the system-environment interaction. Four cases are analyzed in detail including without decoherence, with amplitude damping decoherence, phase damping decoherence and depolarizing decoherence. Sampling periods are specifically designed for these cases to guarantee the required robustness. Two sufficient conditions are presented for guiding the design of unitary control for the cases without decoherence and with amplitude damping decoherence. The proposed approach has potential applications in quantum error-correction and in constructing robust quantum gates.Comment: 33 pages, 5 figures, minor correction

    Information Surfaces in Systems Biology and Applications to Engineering Sustainable Agriculture

    Full text link
    Systems biology of plants offers myriad opportunities and many challenges in modeling. A number of technical challenges stem from paucity of computational methods for discovery of the most fundamental properties of complex dynamical systems. In systems engineering, eigen-mode analysis have proved to be a powerful approach. Following this philosophy, we introduce a new theory that has the benefits of eigen-mode analysis, while it allows investigation of complex dynamics prior to estimation of optimal scales and resolutions. Information Surfaces organizes the many intricate relationships among "eigen-modes" of gene networks at multiple scales and via an adaptable multi-resolution analytic approach that permits discovery of the appropriate scale and resolution for discovery of functions of genes in the model plant Arabidopsis. Applications are many, and some pertain developments of crops that sustainable agriculture requires.Comment: 24 Pages, DoCEIS 1

    Fault Tolerant Filtering and Fault Detection for Quantum Systems Driven By Fields in Single Photon States

    Full text link
    The purpose of this paper is to solve a fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.Comment: arXiv admin note: text overlap with arXiv:1504.0678

    Fabrication and properties of gallium phosphide variable colour displays

    Get PDF
    The unique properties of single-junction gallium phosphide devices incorporating both red and green radiative recombination centers were investigated in application to the fabrication of monolithic 5 x 7 displays capable of displaying symbolic and alphanumeric information in a multicolor format. A number of potentially suitable material preparation techniques were evaluated in terms of both material properties and device performance. Optimum results were obtained for double liquid-phase-epitaxial process in which an open-tube dipping technique was used for n-layer growth and a sealed tipping procedure for subsequent p-layer growth. It was demonstrated that to prepare devices exhibiting a satisfactory range of dominant wavelengths which can be perceived as distinct emission colors extending from the red through green region of the visible spectrum involves a compromise between the material properties necessary for efficient red emission and those considered optimum for efficient green emission

    SciTech News Volume 71, No. 3 (2017)

    Get PDF
    Columns and Reports From the Editor.........................3 Division News Science-Technology Division....5 Chemistry Division....................8 Conference Report, Marion E, Sparks Professional Development Award Recipient..9 Engineering Division................10 Engineering Division Award, Winners Reflect on their Conference Experience..15 Aerospace Section of the Engineering Division .....18 Architecture, Building Engineering, Construction, and Design Section of the Engineering Division................20 Reviews Sci-Tech Book News Reviews...22 Advertisements IEEE..........................................
    • …
    corecore