11,423 research outputs found

    Algebraic Properties of Polar Codes From a New Polynomial Formalism

    Get PDF
    Polar codes form a very powerful family of codes with a low complexity decoding algorithm that attain many information theoretic limits in error correction and source coding. These codes are closely related to Reed-Muller codes because both can be described with the same algebraic formalism, namely they are generated by evaluations of monomials. However, finding the right set of generating monomials for a polar code which optimises the decoding performances is a hard task and channel dependent. The purpose of this paper is to reveal some universal properties of these monomials. We will namely prove that there is a way to define a nontrivial (partial) order on monomials so that the monomials generating a polar code devised fo a binary-input symmetric channel always form a decreasing set. This property turns out to have rather deep consequences on the structure of the polar code. Indeed, the permutation group of a decreasing monomial code contains a large group called lower triangular affine group. Furthermore, the codewords of minimum weight correspond exactly to the orbits of the minimum weight codewords that are obtained from (evaluations) of monomials of the generating set. In particular, it gives an efficient way of counting the number of minimum weight codewords of a decreasing monomial code and henceforth of a polar code.Comment: 14 pages * A reference to the work of Bernhard Geiger has been added (arXiv:1506.05231) * Lemma 3 has been changed a little bit in order to prove that Proposition 7.1 in arXiv:1506.05231 holds for any binary input symmetric channe

    Quantum Fourier sampling, Code Equivalence, and the quantum security of the McEliece and Sidelnikov cryptosystems

    Full text link
    The Code Equivalence problem is that of determining whether two given linear codes are equivalent to each other up to a permutation of the coordinates. This problem has a direct reduction to a nonabelian hidden subgroup problem (HSP), suggesting a possible quantum algorithm analogous to Shor's algorithms for factoring or discrete log. However, we recently showed that in many cases of interest---including Goppa codes---solving this case of the HSP requires rich, entangled measurements. Thus, solving these cases of Code Equivalence via Fourier sampling appears to be out of reach of current families of quantum algorithms. Code equivalence is directly related to the security of McEliece-type cryptosystems in the case where the private code is known to the adversary. However, for many codes the support splitting algorithm of Sendrier provides a classical attack in this case. We revisit the claims of our previous article in the light of these classical attacks, and discuss the particular case of the Sidelnikov cryptosystem, which is based on Reed-Muller codes

    List decoding of a class of affine variety codes

    Full text link
    Consider a polynomial FF in mm variables and a finite point ensemble S=S1Ă—...Ă—SmS=S_1 \times ... \times S_m. When given the leading monomial of FF with respect to a lexicographic ordering we derive improved information on the possible number of zeros of FF of multiplicity at least rr from SS. We then use this information to design a list decoding algorithm for a large class of affine variety codes.Comment: 11 pages, 5 table

    A Number-Theoretic Error-Correcting Code

    Full text link
    In this paper we describe a new error-correcting code (ECC) inspired by the Naccache-Stern cryptosystem. While by far less efficient than Turbo codes, the proposed ECC happens to be more efficient than some established ECCs for certain sets of parameters. The new ECC adds an appendix to the message. The appendix is the modular product of small primes representing the message bits. The receiver recomputes the product and detects transmission errors using modular division and lattice reduction

    Some remarks on multiplicity codes

    Full text link
    Multiplicity codes are algebraic error-correcting codes generalizing classical polynomial evaluation codes, and are based on evaluating polynomials and their derivatives. This small augmentation confers upon them better local decoding, list-decoding and local list-decoding algorithms than their classical counterparts. We survey what is known about these codes, present some variations and improvements, and finally list some interesting open problems.Comment: 21 pages in Discrete Geometry and Algebraic Combinatorics, AMS Contemporary Mathematics Series, 201

    Complementary Sets, Generalized Reed-Muller Codes, and Power Control for OFDM

    Full text link
    The use of error-correcting codes for tight control of the peak-to-mean envelope power ratio (PMEPR) in orthogonal frequency-division multiplexing (OFDM) transmission is considered in this correspondence. By generalizing a result by Paterson, it is shown that each q-phase (q is even) sequence of length 2^m lies in a complementary set of size 2^{k+1}, where k is a nonnegative integer that can be easily determined from the generalized Boolean function associated with the sequence. For small k this result provides a reasonably tight bound for the PMEPR of q-phase sequences of length 2^m. A new 2^h-ary generalization of the classical Reed-Muller code is then used together with the result on complementary sets to derive flexible OFDM coding schemes with low PMEPR. These codes include the codes developed by Davis and Jedwab as a special case. In certain situations the codes in the present correspondence are similar to Paterson's code constructions and often outperform them

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs
    • …
    corecore