5,187 research outputs found

    Directed suborbital graphs on the Poincare disk

    Get PDF
    In this paper we investigate suborbital graphs of a special congruence subgroup of modular group. And this directed graphs is drawn in Poincare disk

    Objective Bayes Factors for Gaussian Directed Acyclic Graphical Models

    Get PDF
    We propose an objective Bayesian method for the comparison of all Gaussian directed acyclic graphical models defined on a given set of variables. The method, which is based on the notion of fractional Bayes factor, requires a single default (typically improper) prior on the space of unconstrained covariance matrices, together with a prior sample size hyper-parameter, which can be set to its minimal value. We show that our approach produces genuine Bayes factors. The implied prior on the concentration matrix of any complete graph is a data-dependent Wishart distribution, and this in turn guarantees that Markov equivalent graphs are scored with the same marginal likelihood. We specialize our results to the smaller class of Gaussian decomposable undirected graphical models, and show that in this case they coincide with those recently obtained using limiting versions of hyper-inverse Wishart distributions as priors on the graph-constrained covariance matrices.Bayes factor; Bayesian model selection; Directed acyclic graph; Exponential family; Fractional Bayes factor; Gaussian graphical model; Objective Bayes;Standard conjugate prior; Structural learning. network; Stochastic search; Structural learning.

    Biased random walks on random graphs

    Full text link
    These notes cover one of the topics programmed for the St Petersburg School in Probability and Statistical Physics of June 2012. The aim is to review recent mathematical developments in the field of random walks in random environment. Our main focus will be on directionally transient and reversible random walks on different types of underlying graph structures, such as Z\mathbb{Z}, trees and Zd\mathbb{Z}^d for d2d\geq 2.Comment: Survey based one of the topics programmed for the St Petersburg School in Probability and Statistical Physics of June 2012. 64 pages, 16 figure

    Fractional isomorphism of graphs

    Get PDF
    AbstractLet the adjacency matrices of graphs G and H be A and B. These graphs are isomorphic provided there is a permutation matrix P with AP=PB, or equivalently, A=PBPT. If we relax the requirement that P be a permutation matrix, and, instead, require P only to be doubly stochastic, we arrive at two new equivalence relations on graphs: linear fractional isomorphism (when we relax AP=PB) and quadratic fractional isomorphism (when we relax A=PBPT). Further, if we allow the two instances of P in A=PBPT to be different doubly stochastic matrices, we arrive at the concept of semi-isomorphism.We present necessary and sufficient conditions for graphs to be linearly fractionally isomorphic, we prove that quadratic fractional isomorphism is the same as isomorphism and we relate semi-isomorphism to isomorphism of bipartite graphs

    Computing hypergraph width measures exactly

    Full text link
    Hypergraph width measures are a class of hypergraph invariants important in studying the complexity of constraint satisfaction problems (CSPs). We present a general exact exponential algorithm for a large variety of these measures. A connection between these and tree decompositions is established. This enables us to almost seamlessly adapt the combinatorial and algorithmic results known for tree decompositions of graphs to the case of hypergraphs and obtain fast exact algorithms. As a consequence, we provide algorithms which, given a hypergraph H on n vertices and m hyperedges, compute the generalized hypertree-width of H in time O*(2^n) and compute the fractional hypertree-width of H in time O(m*1.734601^n).Comment: 12 pages, 1 figur
    corecore