5 research outputs found

    The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics

    Get PDF
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This paper investigates both conditions and philosophical background necessary for that modification. The main conclusion is that the concept of infinity as underlying contemporary mathematics cannot be reduced to a single Peano arithmetic, but to at least two ones independent of each other. Intuitionism, quantum mechanics, and Gentzen’s approaches to completeness an even Hilbert’s finitism can be unified from that viewpoint. Mathematics may found itself by a way of finitism complemented by choice. The concept of information as the quantity of choices underlies that viewpoint. Quantum mechanics interpretable in terms of information and quantum information is inseparable from mathematics and its foundation

    Realizability and recursive mathematics

    Get PDF
    Section 1: Philosophy, logic and constructivityPhilosophy, formal logic and the theory of computation all bear on problems in the foundations of constructive mathematics. There are few places where these, often competing, disciplines converge more neatly than in the theory of realizability structures. Uealizability applies recursion-theoretic concepts to give interpretations of constructivism along lines suggested originally by Heyting and Kleene. The research reported in the dissertation revives the original insights of Kleene—by which realizability structures are viewed as models rather than proof-theoretic interpretations—to solve a major problem of classification and to draw mathematical consequences from its solution.Section 2: Intuitionism and recursion: the problem of classificationThe internal structure of constructivism presents an interesting problem. Mathematically, it is a problem of classification; for philosophy, it is one of conceptual organization. Within the past seventy years, constructive mathematics has grown into a jungle of fullydeveloped "constructivities," approaches to the mathematics of the calculable which range from strict finitism through hyperarithmetic model theory. The problem we address is taxonomic: to sort through the jungle, set standards for classification and determine those features which run through everything that is properly "constructive."There are two notable approaches to constructivity; these must appear prominently in any proposed classification. The most famous is Brouwer's intuitioniam. Intuitionism relies on a complete constructivization of the basic mathematical objects and logical operations. The other is classical recursive mathematics, as represented by the work of Dekker, Myhill, and Nerode. Classical constructivists use standard logic in a mathematical universe restricted to coded objects and recursive operations.The theorems of the dissertation give a precise answer to the classification problem for intuitionism and classical constructivism. Between these realms arc connected semantically through a model of intuitionistic set theory. The intuitionistic set theory IZF encompasses all of the intuitionistic mathematics that does not involve choice sequences. (This includes all the work of the Bishop school.) IZF has as a model a recursion-theoretic structure, V(A7), based on Kleene realizability. Since realizability takes set variables to range over "effective" objects, large parts of classical constructivism appear over the model as inter¬ preted subsystems of intuitionistic set theory. For example, the entire first-order classical theory of recursive cardinals and ordinals comes out as an intuitionistic theory of cardinals and ordinals under realizability. In brief, we prove that a satisfactory partial solution to the classification problem exists; theories in classical recursive constructivism are identical, under a natural interpretation, to intuitionistic theories. The interpretation is especially satisfactory because it is not a Godel-style translation; the interpretation can be developed so that it leaves the classical logical forms unchanged.Section 3: Mathematical applications of the translation:The solution to the classification problem is a bridge capable of carrying two-way mathematical traffic. In one direction, an identification of classical constructivism with intuitionism yields a certain elimination of recursion theory from the standard mathematical theory of effective structures, leaving pure set theory and a bit of model theory. Not only are the theorems of classical effective mathematics faithfully represented in intuitionistic set theory, but also the arguments that provide proofs of those theorems. Via realizability, one can find set-theoretic proofs of many effective results, and the set-theoretic proofs are often more straightforward than their recursion-theoretic counterparts. The new proofs are also more transparent, because they involve, rather than recursion theory plus set theory, at most the set-theoretic "axioms" of effective mathematics.Working the other way, many of the negative ("cannot be obtained recursively") results of classical constructivism carry over immediately into strong independence results from intuitionism. The theorems of Kalantari and Retzlaff on effective topology, for instance, turn into independence proofs concerning the structure of the usual topology on the intuitionistic reals.The realizability methods that shed so much light over recursive set theory can be applied to "recursive theories" generally. We devote a chapter to verifying that the realizability techniques can be used to good effect in the semantical foundations of computer science. The classical theory of effectively given computational domains a la Scott can be subsumed into the Kleene realizability universe as a species of countable noneffective domains. In this way, the theory of effective domains becomes a chapter (under interpre¬ tation) in an intuitionistic study of denotational semantics. We then show how the "extra information" captured in the logical signs under realizability can be used to give proofs of classical theorems about effective domains.Section 4: Solutions to metamathematical problems:The realizability model for set theory is very tractible; in many ways, it resembles a Boolean-valued universe. The tractibility is apparent in the solutions it offers to a number of open problems in the metamathematics of constructivity. First, there is the perennial problem of finding and delimiting in the wide constructive universe those features that correspond to structures familiar from classical mathematics. In the realizability model, it is easy to locate the collection of classical ordinals and to show that they form, intuitionistically, a set rather than a proper class. Also, one interprets an argument of Dekker and Myhill to prove that the classical powerset of the natural numbers contains at least continuum-many distinct cardinals.Second, a major tenet of Bishop's program for constructivity has been that constructive mathematics is "numerical:" all the properties of constructive objects, including the real numbers, can be represented as properties of the natural numbers. The realizability model shows that Bishop's numericalization of mathematics can, in principle, be accomplished. Every set over the model with decidable equality and every metric space is enumerated by a collection of natural numbers

    Aspects of the constructive omega rule within automated deduction

    Get PDF
    In general, cut elimination holds for arithmetical systems with the w -rule, but not for systems with ordinary induction. Hence in the latter, there is the problem of generalisation, since arbitrary formulae can be cut in. This makes automatic theorem -proving very difficult. An important technique for investigating derivability in formal systems of arithmetic has been to embed such systems into semi- formal systems with the w -rule. This thesis describes the implementation of such a system. Moreover, an important application is presented in the form of a new method of generalisation by means of "guiding proofs" in the stronger system, which sometimes succeeds in producing proofs in the original system when other methods fail

    Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic

    Get PDF
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n = 3” has been known for a long time. It needs “Hilbert mathematics”, which is inherently complete unlike the usual “Gödel mathematics”, and based on “Hilbert arithmetic” to generalize Peano arithmetic in a way to unify it with the qubit Hilbert space of quantum information. An “epoché to infinity” (similar to Husserl’s “epoché to reality”) is necessary to map Hilbert arithmetic into Peano arithmetic in order to be relevant to Fermat’s age. Furthermore, the two linked semigroups originating from addition and multiplication and from the Peano axioms in the final analysis can be postulated algebraically as independent of each other in a “Hamilton” modification of arithmetic supposedly equivalent to Peano arithmetic. The inductive proof of FLT can be deduced absolutely precisely in that Hamilton arithmetic and the pransfered as a corollary in the standard Peano arithmetic furthermore in a way accessible in Fermat’s epoch and thus, to himself in principle. A future, second part of the paper is outlined, getting directed to an eventual proof of the case “n=3” based on the qubit Hilbert space and the Kochen-Specker theorem inferable from it

    Formalizing Constructive Analysis: A comparison of minimal systems and a study of uniqueness principles.

    Get PDF
    Αυτή η διατριβή εξετάζει ορισμένες πλευρές της τυποποίησης και της αξιωματικοποίησης της κατασκευαστικής ανάλυσης. Η έρευνα στους κλάδους της κατασκευαστικής ανάλυσης που αντιστοιχούν στις διάφορες εκδοχές κατασκευαστικότητας διεξάγεται σε μια πλειάδα τυπικών ή όχι συστημάτων, των οποίων οι σχέσεις είναι ασαφείς. Αυτό το πρόβλημα αποβαίνει κρίσιμο για την ανάπτυξη της σχετικά νέας περιοχής των κατασκευαστικών ανάστροφων μαθηματικών. Η εργασία αυτή συμβάλλει σε μια πιο καθαρή εικόνα. Το Μέρος 1 περιέχει μία ακριβή σύγκριση των δύο ευρύτερα χρησιμοποιούμενων συστημάτων που τυποποιούν τον κοινό πυρήνα της κατασκευαστικής, της ενορατικής, της αναδρομικής και της κλασικής ανάλυσης, των Μ και EL, των Kleene και Troelstra, αντιστοίχως. Αποδεικνύεται ότι το EL είναι ασθενέστερο από το M και ότι η διαφορά τους αποτυπώνεται από μια αρχή η οποία εγγυάται την ύπαρξη χαρακτηριστικής συνάρτησης για κάθε αποκρίσιμο κατηγόρημα φυσικών αριθμών. Με παρόμοια επιχειρήματα προκύπτουν συγκρίσεις για τα περισσότερα από τα χρησιμοποιούμενα ελαχιστικά συστήματα. Στην κατασκευαστική ανάλυση χρησιμοποιούνται διάφορες αρχές επιλογής, συνέχειας και άλλες. Στο Μέρος 2, μελετώνται σχέσεις μεταξύ πολλών από αυτές, στις εκδοχές τους με μία συνθήκη μοναδικότητας, ένα χαρακτηριστικό από το οποίο απορρέουν ενδιαφέρουσες ιδιότητες, καθώς και σχέσεις μεταξύ αυτών των αρχών και μη κατασκευαστικών λογικών αρχών, στο πνεύμα των ανάστροφων μαθηματικών.This dissertation investigates certain aspects of the formalization and axiomatization of constructive analysis. The research in the branches of constructive analysis corresponding to the various forms of constructivism is carried out in a multitude of formal or informal systems, whose relations are unclear. This problem becomes quite crucial for the development of the relatively new field of constructive reverse mathematics. This work contributes to a clearer picture. Part 1 contains a precise comparison of the two most widely used systems which formalize the common core of constructive, intuitionistic, recursive and classical analysis, namely Kleene's M and Troelstra's EL. It is shown that EL is weaker than M and that their difference is captured by a function existence principle asserting that every decidable predicate of natural numbers has a characteristic function. Applying similar arguments, comparisons of most of the used minimal systems are obtained. In constructive analysis, various forms of choice principles, continuity principles and many others are used. Part 2 studies relations between many of them, in their versions having a uniqueness condition, a feature from which interesting properties follow, as well as relations between these principles and non-constructive logical principles, in the spirit of reverse mathematics
    corecore