9,827 research outputs found

    On stacked triangulated manifolds

    Full text link
    We prove two results on stacked triangulated manifolds in this paper: (a) every stacked triangulation of a connected manifold with or without boundary is obtained from a simplex or the boundary of a simplex by certain combinatorial operations; (b) in dimension d4d \geq 4, if Δ\Delta is a tight connected closed homology dd-manifold whose iith homology vanishes for 1<i<d11 < i < d-1, then Δ\Delta is a stacked triangulation of a manifold.These results give affirmative answers to questions posed by Novik and Swartz and by Effenberger.Comment: 11 pages, minor changes in the organization of the paper, add information about recent result

    Boundary value processes: estimation and identification

    Get PDF
    Recent results obtained for boundary value processes and the associated smoothing and identification problems are presented in this paper. Both lumped and distributed parameter models are considered. Some open problems are discussed and the fundamental mathematical difficulties that arise in studying nonlinear extensions of the proposed models are mentioned

    Hydrophobic hydration driven self-assembly of Curcumin in water: Similarities to nucleation and growth under large metastability, and an analysis of water dynamics at heterogeneous surfaces

    Full text link
    As the beneficial effects of curcumin have often been reported to be limited to its small concentrations, we have undertaken a study to find the aggregation properties of curcumin in water by varying the number of monomers. Our molecular dynamics simulation results show that the equilibrated structure is always an aggregated state with remarkable structural rearrangements as we vary the number of curcumin monomers from 4 to 16 monomers. We find that curcumin monomers form clusters in a very definite pattern where they tend to aggregate both in parallel and anti-parallel orientation of the phenyl rings, often seen in the formation of beta-sheet in proteins. A considerable enhancement in the population of parallel alignments is observed with increasing the system size from 12 to 16 curcumin monomers. Due to the prevalence of such parallel alignment for large system size, a more closely packed cluster is formed with maximum number of hydrophobic contacts. We also follow the pathway of cluster growth, in particular the transition from the initial segregated to the final aggregated state. We find the existence of a metastable structural intermediate involving a number of intermediate-sized clusters dispersed in the solution. The course of aggregation bears similarity to nucleation and growth in highly metastable state. The final aggregated form remains stable with total exclusion of water from its sequestered hydrophobic core. We also investigate water structure near the cluster surface along with their orientation. We find that water molecules form a distorted tetrahedral geometry in the 1st solvation layer of the cluster, interacting strongly with hydrophilic groups at the surface of curcumin. The dynamics of such quasi-bound water molecules near the surface of curcumin cluster is considerably slower than the bulk signifying a restricted motion as often found in protein hydration layer.Comment: 31 pages, 9 figure

    Complete breakdown of the Debye model of rotational relaxation near the isotropic-nematic phase boundary: Effects of intermolecular correlations in orientational dynamics

    Get PDF
    The Debye-Stokes-Einstein (DSE) model of rotational diffusion predicts that the rotational correlation times τl\tau_{l} vary as [l(l+1)]1[l(l+1)]^{-1}, where ll is the rank of the orientational correlation function (given in terms of the Legendre polynomial of rank ll). One often finds significant deviation from this prediction, in either direction. In supercooled molecular liquids where the ratio τ1/τ2\tau_{1}/\tau_{2} falls considerably below three (the Debye limit), one usually invokes a jump diffusion model to explain the approach of the ratio τ1/τ2\tau_{1}/\tau_{2} to unity. Here we show in a computer simulation study of a standard model system for thermotropic liquid crystals that this ratio becomes much less than unity as the isotropic-nematic phase boundary is approached from the isotropic side. Simultaneously, the ratio τ2/η\tau_2/\eta (where η\eta is the shear viscosity of the liquid) becomes {\it much larger} than hydrodynamic value near the I-N transition. We have also analyzed the break down of the Debye model of rotational diffusion in ratios of higher order rotational correlation times. We show that the break down of the DSE model is due to the growth of orientational pair correlation and provide a mode coupling theory analysis to explain the results.Comment: Submitted to Physical Review

    Inhomogeneous Tensionless Superstrings

    Full text link
    We construct a novel tensionless limit of Superstring theory that realises the Inhomogeneous Super Galilean Conformal Algebra (SGCAI_I) as the residual symmetries in the analogue of the conformal gauge, as opposed to previous constructions of the tensionless superstring, where a smaller symmetry algebra called the Homogeneous SGCA emerged as the residual gauge symmetry on the worldsheet. We obtain various features of the new tensionless theory intrinsically as well as from a systematic limit of the corresponding features of the tensile theory. We discuss why it is desirable and also natural to work with this new tensionless limit and the larger algebra.Comment: 34 page

    Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer

    Full text link
    The impact of turbulent fluctuations on the forces exerted by a fluid on a towed spherical particle is investigated by means of high-resolution direct numerical simulations. The measurements are carried out using a novel scheme to integrate the two-way coupling between the particle and the incompressible surrounding fluid flow maintained in a high-Reynolds-number turbulent regime. The main idea consists in combining a Fourier pseudo-spectral method for the fluid with an immersed-boundary technique to impose the no-slip boundary condition on the surface of the particle. Benchmarking of the code shows a good agreement with experimental and numerical measurements from other groups. A study of the turbulent wake downstream the sphere is also reported. The mean velocity deficit is shown to behave as the inverse of the distance from the particle, as predicted from classical similarity analysis. This law is reinterpreted in terms of the principle of "permanence of large eddies" that relates infrared asymptotic self-similarity to the law of decay of energy in homogeneous turbulence. The developed method is then used to attack the problem of an upstream flow that is in a developed turbulent regime. It is shown that the average drag force increases as a function of the turbulent intensity and the particle Reynolds number. This increase is significantly larger than predicted by standard drag correlations based on laminar upstream flows. It is found that the relevant parameter is the ratio of the viscous boundary layer thickness to the dissipation scale of the ambient turbulent flow. The drag enhancement can be motivated by the modification of the mean velocity and pressure profile around the sphere by small scale turbulent fluctuations.Comment: 24 pages, 22 figure

    Rindler/Contracted-CFT Correspondence

    Get PDF
    Taking the flat-space limit (zero cosmological constant limit) of the Rindler-AdS spacetime yields the Rindler metric. According to the proposal of Flat/contracted-CFT correspondence, the flat-space limit on the bulk side of asymptotically AdS spacetimes corresponds to the contraction of the conformal field theory on the boundary. We use this proposal for the Rindler-AdS/CFT correspondence and propose a dual theory for the Rindler spacetime, which is a contracted conformal field theory (CCFT). We show that the two-dimensional CCFT symmetries exactly predict the same two-point functions that one may find by taking the flat-space limit of three-dimensional Rindler-AdS holographic results. Using the Flat/CCFT proposal, we also calculate the three-dimensional Rindler energy-momentum tensor. Since the near horizon geometry of non-extreme black holes has a Rindler part, we note that it is plausible to find a dual CCFT at the horizon of non-extreme black holes. By using our energy-momentum tensor, we find the correct mass of non-rotating BTZ and show that the Cardy-like formula for CCFT yields the Bekenstein-Hawking entropy of non-extreme BTZ. Our current work is the first step towards describing the entropy of non-extreme black holes in terms of CCFTs microstates which live on the horizon.Comment: 18 pages, V2: typos corrected, published versio
    corecore