389 research outputs found

    Exploiting zoning based on approximating splines in cursive script recognition

    Get PDF
    Because of its complexity, handwriting recognition has to exploit many sources of information to be successful, e.g. the handwriting zones. Variability of zone-lines, however, requires a more flexible representation than traditional horizontal or linear methods. The proposed method therefore employs approximating cubic splines. Using entire lines of text rather than individual words is shown to improve the zoning accuracy, especially for short words. The new method represents an improvement over existing methods in terms of range of applicability, zone-line precision and zoning-classification accuracy. Application to several problems of handwriting recognition is demonstrated and evaluated

    Stroke-Based Cursive Character Recognition

    Get PDF
    International audienceHuman eye can see and read what is written or displayed either in natural handwriting or in printed format. The same work in case the machine does is called handwriting recognition. Handwriting recognition can be broken down into two categories: off-line and on-line. ..

    An end-to-end, interactive Deep Learning based Annotation system for cursive and print English handwritten text

    Full text link
    With the surging inclination towards carrying out tasks on computational devices and digital mediums, any method that converts a task that was previously carried out manually, to a digitized version, is always welcome. Irrespective of the various documentation tasks that can be done online today, there are still many applications and domains where handwritten text is inevitable, which makes the digitization of handwritten documents a very essential task. Over the past decades, there has been extensive research on offline handwritten text recognition. In the recent past, most of these attempts have shifted to Machine learning and Deep learning based approaches. In order to design more complex and deeper networks, and ensure stellar performances, it is essential to have larger quantities of annotated data. Most of the databases present for offline handwritten text recognition today, have either been manually annotated or semi automatically annotated with a lot of manual involvement. These processes are very time consuming and prone to human errors. To tackle this problem, we present an innovative, complete end-to-end pipeline, that annotates offline handwritten manuscripts written in both print and cursive English, using Deep Learning and User Interaction techniques. This novel method, which involves an architectural combination of a detection system built upon a state-of-the-art text detection model, and a custom made Deep Learning model for the recognition system, is combined with an easy-to-use interactive interface, aiming to improve the accuracy of the detection, segmentation, serialization and recognition phases, in order to ensure high quality annotated data with minimal human interaction.Comment: 17 pages, 8 figures, 2 table

    DEVELOPMENT OF AN IMPROVED DATABASE FOR YORUBA HANDWRITTEN CHARACTER

    Get PDF
    For improved human comprehension and autonomous machine perception, optical character recognition has been saddled with the task of translating printed or hand-written materials into digital text files. Many works have been proposed and implemented in the computerization of different human languages in the global community, but microscopic attempts have also been made to place Yoruba Handwritten Character on the board of Optical Character Recognition. This study developed a novel available dataset for research on offline Yoruba handwritten character recognition so as to fill the gaps in the existing knowledge. The developed database contains a total of 12,600 characters being made up of 70 classes from a total number of 200 writers, in which 80 % (10,500) is regarded as the training and validation dataset while the remaining 20 % (2,100) is regarded as testing dataset. The dataset is available on https://github.com/oluwashina90/Yoruba-handwritten-character-database. Hence, it is the complete and largest dataset available for Yoruba Handwritten character research

    Information Preserving Processing of Noisy Handwritten Document Images

    Get PDF
    Many pre-processing techniques that normalize artifacts and clean noise induce anomalies due to discretization of the document image. Important information that could be used at later stages may be lost. A proposed composite-model framework takes into account pre-printed information, user-added data, and digitization characteristics. Its benefits are demonstrated by experiments with statistically significant results. Separating pre-printed ruling lines from user-added handwriting shows how ruling lines impact people\u27s handwriting and how they can be exploited for identifying writers. Ruling line detection based on multi-line linear regression reduces the mean error of counting them from 0.10 to 0.03, 6.70 to 0.06, and 0.13 to 0.02, com- pared to an HMM-based approach on three standard test datasets, thereby reducing human correction time by 50%, 83%, and 72% on average. On 61 page images from 16 rule-form templates, the precision and recall of form cell recognition are increased by 2.7% and 3.7%, compared to a cross-matrix approach. Compensating for and exploiting ruling lines during feature extraction rather than pre-processing raises the writer identification accuracy from 61.2% to 67.7% on a 61-writer noisy Arabic dataset. Similarly, counteracting page-wise skew by subtracting it or transforming contours in a continuous coordinate system during feature extraction improves the writer identification accuracy. An implementation study of contour-hinge features reveals that utilizing the full probabilistic probability distribution function matrix improves the writer identification accuracy from 74.9% to 79.5%

    Advances in Manipulation and Recognition of Digital Ink

    Get PDF
    Handwriting is one of the most natural ways for a human to record knowledge. Recently, this type of human-computer interaction has received increasing attention due to the rapid evolution of touch-based hardware and software. While hardware support for digital ink reached its maturity, algorithms for recognition of handwriting in certain domains, including mathematics, are lacking robustness. Simultaneously, users may possess several pen-based devices and sharing of training data in adaptive recognition setting can be challenging. In addition, resolution of pen-based devices keeps improving making the ink cumbersome to process and store. This thesis develops several advances for efficient processing, storage and recognition of handwriting, which are applicable to the classification methods based on functional approximation. In particular, we propose improvements to classification of isolated characters and groups of rotated characters, as well as symbols of substantially different size. We then develop an algorithm for adaptive classification of handwritten mathematical characters of a user. The adaptive algorithm can be especially useful in the cloud-based recognition framework, which is described further in the thesis. We investigate whether the training data available in the cloud can be useful to a new writer during the training phase by extracting styles of individuals with similar handwriting and recommending styles to the writer. We also perform factorial analysis of the algorithm for recognition of n-grams of rotated characters. Finally, we show a fast method for compression of linear pieces of handwritten strokes and compare it with an enhanced version of the algorithm based on functional approximation of strokes. Experimental results demonstrate validity of the theoretical contributions, which form a solid foundation for the next generation handwriting recognition systems

    Restoring Independent Living after Disability Using a Wearable Device: A Synergistic Physio-Neuro Approach to Leverage Neuroplasticity

    Get PDF
    The number of people living with various grades of disability is now in excess of 1 billion. A significant portion of this population is dependent on caregivers and unable to access or afford therapy. This emerging healthcare challenge coincides with new knowledge about the self-learning, self-organizing, neuroplastic nature of the brain, offering hope to those trying to regain independence after disability. As conditions such as stroke and dementia begin to affect more and more people in the younger age groups, there is an urgent, global need for a connected rehabilitation solution that leverages the advantages of neuroplasticity to restore cognitive and physical function. This chapter explains a novel approach using a Synergistic Physio-Neuro learning model (SynPhNe learning model), which mimics how babies learn. This learning model has been embedded into a wearable, biofeedback device that can be used to restore function after stroke, injury, the degenerative effects of aging or a childhood learning disability. This chapter enumerates the clinical studies conducted with adult stroke patients in two scenarios—with therapist supervision and with lay person supervision. The results indicate that such a learning model is effective and promises to be an accessible and affordable solution for patients striving for independence
    • …
    corecore