3,921 research outputs found

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks

    Deep Reinforcement Learning-based Scheduling in Edge and Fog Computing Environments

    Full text link
    Edge/fog computing, as a distributed computing paradigm, satisfies the low-latency requirements of ever-increasing number of IoT applications and has become the mainstream computing paradigm behind IoT applications. However, because large number of IoT applications require execution on the edge/fog resources, the servers may be overloaded. Hence, it may disrupt the edge/fog servers and also negatively affect IoT applications' response time. Moreover, many IoT applications are composed of dependent components incurring extra constraints for their execution. Besides, edge/fog computing environments and IoT applications are inherently dynamic and stochastic. Thus, efficient and adaptive scheduling of IoT applications in heterogeneous edge/fog computing environments is of paramount importance. However, limited computational resources on edge/fog servers imposes an extra burden for applying optimal but computationally demanding techniques. To overcome these challenges, we propose a Deep Reinforcement Learning-based IoT application Scheduling algorithm, called DRLIS to adaptively and efficiently optimize the response time of heterogeneous IoT applications and balance the load of the edge/fog servers. We implemented DRLIS as a practical scheduler in the FogBus2 function-as-a-service framework for creating an edge-fog-cloud integrated serverless computing environment. Results obtained from extensive experiments show that DRLIS significantly reduces the execution cost of IoT applications by up to 55%, 37%, and 50% in terms of load balancing, response time, and weighted cost, respectively, compared with metaheuristic algorithms and other reinforcement learning techniques

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape

    Normalization: A Preprocessing Stage

    Full text link
    As we know that the normalization is a pre-processing stage of any type problem statement. Especially normalization takes important role in the field of soft computing, cloud computing etc. for manipulation of data like scale down or scale up the range of data before it becomes used for further stage. There are so many normalization techniques are there namely Min-Max normalization, Z-score normalization and Decimal scaling normalization. So by referring these normalization techniques we are going to propose one new normalization technique namely, Integer Scaling Normalization. And we are going to show our proposed normalization technique using various data sets.Comment: 4 pages, 3 figures, 3 table

    SLO-aware Colocation of Data Center Tasks Based on Instantaneous Processor Requirements

    Full text link
    In a cloud data center, a single physical machine simultaneously executes dozens of highly heterogeneous tasks. Such colocation results in more efficient utilization of machines, but, when tasks' requirements exceed available resources, some of the tasks might be throttled down or preempted. We analyze version 2.1 of the Google cluster trace that shows short-term (1 second) task CPU usage. Contrary to the assumptions taken by many theoretical studies, we demonstrate that the empirical distributions do not follow any single distribution. However, high percentiles of the total processor usage (summed over at least 10 tasks) can be reasonably estimated by the Gaussian distribution. We use this result for a probabilistic fit test, called the Gaussian Percentile Approximation (GPA), for standard bin-packing algorithms. To check whether a new task will fit into a machine, GPA checks whether the resulting distribution's percentile corresponding to the requested service level objective, SLO is still below the machine's capacity. In our simulation experiments, GPA resulted in colocations exceeding the machines' capacity with a frequency similar to the requested SLO.Comment: Author's version of a paper published in ACM SoCC'1

    Machine learning based Model for Cloud Load Prediction and Resource Allocation

    Get PDF
    Elasticity and the lack of upfront capital investment offered by cloud computing is appealing to many businesses. There is a lot of discussion on the benefits and costs of the cloud model and on how to move legacy applications onto the cloud platform. Here we study a different problem: how can a cloud service provider best multiplex its virtual resources onto the physical hardware? This is important because much of the touted gains in the cloud model come from such multiplexing. Studies have found that servers in many existing data centers are often severely under-utilized due to over-provisioning for the peak demand. The cloud model is expected to make such practice unnecessary by offering automatic scale up and down in response to load variation. Besides reducing the hardware cost, it also saves on electricity which contributes to a significant portion of the operational expenses in large data centers. Proper resource allocation for various virtualized resources must be based on these cloud load predictions. The presence of heterogeneous applications, such as content delivery networks, web applications, and MapReduce tasks, complicates this process. Cloud workloads with conflicting resource allocation needs for communication and information processing further exacerbate the difficulty

    Task scheduling model for fog paradigm

    Get PDF
    Task scheduling in fog paradigm is highly complex and in the literature, there are still few studies. In the cloud architecture, it is widely studied and in many researches, it is approached from the perspective of service providers. Trying to bring innovative contributions in these areas, in this paper, we propose a model to the context-aware task-scheduling problem for fog paradigm. In our proposal, different context parameters are normalized through Min-Max normalization; requisition priorities are defined through the application of the Multiple Linear Regression (MLR) technique and scheduling is performed using Multi-Objective Non-Linear Programming Optimization (MONLIP) technique.The authors are grateful to the Calouste Gulbenkian Foundation for its funding of this research through the Ph.D. scholarship under the reference No. 234242, 2019 - Postgraduate Scholarships for students from PALOP and Timor-Leste.info:eu-repo/semantics/publishedVersio
    corecore